
Digital Storage Oscilloscope
Programming Manual
2017.12
Table of Contents
3Chapter I General Description of Programming

31.1 Communication interfaces

31.2 Brief introduction to SCPI commands

41.2.1 Command format

41.2.2 Description of symbols

51.2.3 Parameter types

6Chapter II Command systems

72.1 Public commands

122.2 SYSTem commands

142.3 ACQuire commands

162.4 WAVeform commands

182.5 MEASure commands

272.6 MARKer commands

322.7 CHANnel commands

382.8 TIMebase commands

402.9 TRIGger commands

532.10 KEY commands

562.11 Other command

57Chapter III Programming guide

573.1 Programming based on USBTMC interface

573.1.1 Preparation

573.1.2 Use Visual Studio 2010 for programming

633.2 Programming based on COM interface

633.2.1 Preparation

643.2.2 Use Visual Studio 2010 for programming

Chapter I General Description of Programming
This chapter mainly introduces how to program digital storage oscilloscope via remote interface commands, as well as format and input methods of such commands.
This chapter includes the following:
· Communication interfaces
· Brief introduction to SCPI commands
Command format
Description of symbols
Parameter types
1.1 Communication interfaces
This digital oscilloscope can communicate with computer via USBTMC or COM interface. Normally, commands used for program compiling are implanted in host machine in the form of ASCII character string to allow operation, control, and secondary development by user.
Device connection:
· USBTMC: use USB data wire to connect USB Device interface on oscilloscope rear panel to computer USB interface
· COM: use serial port wire to connect RS232 interface on oscilloscope rear panel to computer
You can use computer to perform the following operations of the oscilloscope:
· Setup of the oscilloscope
· Relevant measurements
· Acquisition of data (signal waveforms and measured data) from the oscilloscope
1.2 Brief introduction to SCPI commands
Standard Commands for Programmable Instrument (SCPI) are based on standard instruction set of programmable instrument of IEEE 488.2. SCPI commands include two parts: IEEE488.2 public commands and SCPI instrument-specific commands.
Public commands are those that must be supported by the instrument as specified by IEEE488.2. Both their syntax and semantics follow stipulations by IEEE488.2. Public commands are irrelevant to instrument measurement functions and are used for setup again, self-test, and status operations. For SCPI public commands, refer to IEEE488.2 protocol standard.
SCPI instrument-specific commands are used to control instrument measurements, read data, and control functions.
1.2.1 Command format
SCPI commands adopt a tree type hierarchical structure that includes a number of sub-systems. Each sub-system comprises one root keyword and one or more hierarchical keywords. A command line normally starts with colon “:”. Keywords are separated by colon “:”. Following the keywords, optional parameter setting is provided. Command and parameter are separated by a space. Question mark “?” added at end of the command line indicates querying of this function.
Examples:
:TRIGger:EDGE:SOURce <source >

:TRIGger:EDGE:SOURce?

TRIGger is the root keyword of the command. EDGE and SOURce are the level 2 and level 3 keywords respectively. The command line starts with colon “:”. The keywords are separated by “:”. <source> indicates a parameter that can be set. Command :TRIGger:EDGE:SOURce and parameter <source> are separated by a space. Question mark “?” indicates querying, to return result of querying.
In a command with parameters, these parameters are normally separated by “,”, e.g. parameters measuring command “:MEASure:VAVerage? CYCLe,CHANnel1”.
1.2.2 Description of symbols
The following three types of symbols are not content of SCPI commands but normally used for auxiliary description of parameters in a command.
1. Braces { }
Options in braces show parameters that must be selected in the command. Each such option can be selected only one time in a command. These options are separated by “|”.
For example, {{1|ON}|{0|OFF}} indicates selection of 1, ON, 0, or OFF as data item.
2. Square brackets []

Contents in square brackets are options that can be omitted.
2. Angle brackets < >

A parameter in angle brackets must be replaced by an effective value, e.g.:
:CHANnel1:SCALe <scale>[<suffix>]
:CHANnel1:SCALe 100mV

1.2.3 Parameter types
Parameters contained in commands introduced by this manual can be classified into 6 types: Boolean, keyword, continuous integer, continuous real number, discrete, and ASCII character string
1. Boolean
Value of this type of parameters can be “OFF”, “ON”, “0”, or “1”; e.g.:
:CHANnel1:DISPlay OFF|ON|0|1

“ON” or “1” indicates enabling a function, while “OFF” or “0” indicates disabling a function.
2. Keyword
Value of the parameter is the listed value; e.g.:
:TRIGger:EDGE:SLOPe NEGative | POSitive | EITHer

3. Continuous integer
Value of the parameter is a continuous integer; e.g.:
:TRIGger:TV:LINE <line_number>

< line_number > can be an integer in 1~625 (inclusive of 1 and 625).
4. Continuous real number
The parameter can be any value provided that it is in the range of effective value and that precision requirement is satisfied; e.g.:
:TIMebase:POSition < pos >

< pos > can be any real number in the effective range.
5. Discrete
Value of the parameter is an enumerative value; e.g.:
:ACQuire: COUNt <count>

<count> can only be 4, 16, 32, 64, 128, or 256.
6. ASCII character string
Value of the parameter is a combination of ASCII characters; e.g.:
:TRIGger:MODE <mod>

<mod> can be “EDGE”, “GLITch”, “TV”, “SLOPe”, or “ALTernate”.
Chapter II Command systems
This chapter introduces each command in the digital oscilloscope instruction set system in details, including command format, functional description, method of use, and relevant precautions.
Main command systems are as follows:
· Public commands
· SYSTem commands
· ACQuire commands
· WAVeform commands
· MEASure commands
· MARKer commands
· CHANnel commands
· TIMebase commands
· TRIGger commands
· KEY commands
· Other commands
2.1 Public commands
IEEE488.2 standard defines some public commands used to query instrument basic information or execute commonly used basic operations. These commands normally start with “*” and command keyword length is 3 characters.
Public commands of the digital storage oscilloscope include the following:
*CLS

*ESE

*ESE?

*ESR?

*IDN?
*OPC

*OPC?

*RST
*SRE

*SRE?

*STB

*TST

*WAI

The following introduces format, function, and method of use of each of these commands in details.
	*CLS

	Command format
	*CLS

	Functional description
	Clear event registers in all register blocks, while clearing error queue

	*ESE

	Command format
	*ESE <value>

	Functional description
	This command is used to set the enabling register for standard event register block. Bit 1 and bit 6 of standard event register are not used and are always 0. Therefore, value range of <value> is decimal numbers corresponding to binary numbers between 00000000 (decimal number 0) and 11111111 (decimal number 255) with bit 1 and bit 6 being 0.

	Example
	*ESE 16: enable bit 4 (decimal number 16) of the enabling register

	*ESE?

	Command format
	*ESE?

	Functional description
	Query to return an integer equal to sum of weights of all set bits in the register. For example, if bit 4 (decimal number 16) and bit 7 (decimal number 128) are enabled, “144” will be returned.

	*ESR

	Command format
	*ESR?

	Functional description
	This command is used to query event register for standard event register block. Bit 1 and bit 6 of standard event register are not used and are always 0. Therefore, the query returns a decimal number corresponding to a binary number between 00000000 (decimal number 0) and 11111111 (decimal number 255) with bit 1 and bit 6 being 0.

	Returned format
	Query to return an integer equal to sum of weights of all set bits in the register. For example, if bit 4 (decimal number 16) and bit 7 (decimal number 128) are enabled, “144” will be returned.

	Example
	*ESR?: the query returns “24” (bit 3 and bit 4 have been set).

Annex: Definition of each bit of the ESE register:
	Bit
	Weight
	Name
	Enabled

	7
	128
	PON
	Power On

	6 (not used)
	64
	URQ
	User Request

	5
	32
	CME
	Command Error

	4
	16
	EXE
	Execution Error

	3
	8
	DDE
	Dev. Dependent Error

	2
	4
	QYE
	Query Error

	1 (not used)
	2
	RQL
	Request Control

	0
	1
	OPC
	Operation Complete

	*IDN?

	Command format
	*IDN?

	Functional description
	This command is used to query instrument manufacturer name, oscilloscope model, product serial number, and software version.

	Returned format
	Return manufacturer name, oscilloscope model, product serial number, and software version comprising digits separated by points.

	Example
	*IDN?

DSO1102CAL-2M,

USB0::0x4348::0x5537:111020N1503270001::INSTR,1.00

	*OPC

	Command format
	*OPC

	Functional description
	After completion of current operation, set bit “Operation Complete” (bit 0) in the standard event status register to 1.

	*OPC?

	Command format
	*OPC?

	Functional description
	This command is used to query if execution of current command is complete or not.

	Returned format
	Return 0 or 1: 0 indicates not complete; 1 indicates complete.

	*RST

	Command format
	*RST

	Functional description
	This command is used to reset the system, that is to say, return the instrument to its default status.

	*SRE

	Command format
	*SRE <value>

	Functional description
	This command is used to set the enabling register for status byte register block. Bit 0 and bit 1 of status byte register are not used and are always 0. Therefore, value range of <value> is decimal numbers corresponding to binary numbers between 00000000 (decimal number 0) and 11111111 (decimal number 255) with bit 0 and bit 1 being 0.

	Example
	*SRE 16: enable bit 4 (decimal number 16) of the enabling register

	*SRE?

	Command format
	*SRE?

	Functional description
	Query to return an integer equal to sum of weights of all set bits in the register. For example, if bit 4 (decimal number 16) and bit 7 (decimal number 128) are enabled, “144” will be returned.

	*STB?

	Command format
	*STB?

	Functional description
	Query the condition register for status byte register block. An integer equal to sum of weights of all set bits in the register will be returned.

Annex: Definition of each bit of the SRE register:
	Bit
	Weight
	Name
	Enabled

	7
	128
	OPER
	Operation Status Reg

	6
	64

	Not used

	5
	32
	ESB
	Event Status Bit

	4
	16
	MAV
	Message Available

	3
	8

	Not used

	2
	4
	MSG
	Message

	1 (not used)
	2
	USR
	User

	0 (not used)
	1
	TRG
	Trigger

	*TST?

	Command format
	*TST?

	Functional description
	Execute self-test once and return result of self-test

	Returned format
	Query to return a decimal integer, in corresponding binary number of which “0” indicates successful self-test and “1” indicates failed self-test

	*WAI

	Command format
	*WAI

	Functional description
	Waiting for completion of the operation

2.2 SYSTem commands
SYSTem commands are used for the most fundamental operations of the oscilloscope, mainly operation control and operations set by the system. These commands are mainly the following:
:RUN

:STOP

:SINGle

:AUToscale

:SYSTem:ERROr

The following introduces format, function, and method of use of each above command in details.
	:RUN

	Command format
	:RUN

	Functional description
	Execute this command so that the oscilloscope starts waveform sampling. To stop the work, execute command :STOP.

	: STOP

	Command format
	: STOP

	Functional description
	Execute this command so that the oscilloscope stops waveform sampling. To resume the work, execute command :RUN.

	: SINGle

	Command format
	: SINGle

	Functional description
	This command is used to set triggering mode to Single, that is to say, one waveform is acquired each time triggering is detected, and then acquisition stops.

	: AUToscale

	Command format
	: AUToscale

	Functional description
	This command is used to automatically set instrument control value, to achieve optimum display effect of input waveform.

	:SYSTem:ERROr

	Command format
	:SYSTem:ERROr?

	Functional description
	This command is used to query last error code, e.g. Undefined header. If no error message, 0 will be returned (No error).

Annex: System error codes
Error code Mnemonics symbol Error description
0 ERR_NONE No error

1 ERR_UNDEFINED_CMD Undefined header

2 ERR_PARAM Error Param

3 ERR_OUT_OF_RANGE Out Of Range
2.3 ACQuire commands
ACQuire commands are used to set oscilloscope sampling mode. Main commands are:
:ACQuire:TYPE

:ACQuire:MODE

:ACQuire:COUNt
:ACQuire:SRATe
The following introduces format, function, and method of use of each above command in details.
	:ACQuire:TYPE

	Command format
	:ACQuire:TYPE <type>
:ACQuire:TYPE?

	Functional description
	This command is used to set oscilloscope acquisition mode.
Set <type> ::= {NORMal | PEAK | AVERage}

	Returned format
	Query returns <type> ::= {NORM| PEAK | AVER}

	Example
	: ACQuire:TYPE AVER Set acquisition mode to average sampling
: ACQuire:TYPE? Query returns AVER.

	:ACQuire:MODE

	Command format
	:ACQuire:MODE <mode>

:ACQuire:MODE?

	Functional description
	This command is used to set sampling mode currently required for the oscilloscope.
Set <mode> ::= {RTIMe | SEGMented}

	Returned format
	Query returns <mode> ::= {RTIM | SEGM}

	Example
	:ACQ:MODE RTIMe Set sampling mode to real-time sampling.
:ACQ:MODE? Query returns RTIM.

	:ACQuire:COUNt

	Command format
	:ACQuire:COUNt <count>

:ACQuire:COUNt?

	Functional description
	This command is used to set average count of average sampling for the oscilloscope.
In which: <count> ::= {4 | 16 | 32 | 64 | 128| 256}

	Returned format
	Query returns <count>::= {4 | 16 | 32 | 64 | 128| 256}

	Example
	: ACQuire:COUNt 32 Set sampling count to equivalent sampling.
: ACQuire:COUNt? Query returns 32.

	:ACQuire:SRATe

	Command format
	:ACQuire:SRATe?

	Functional description
	This command is used to query current sampling by the oscilloscope.

	Returned format
	Query returns current sampling rate, in Sa/s.

	Example
	: ACQuire:SRATe? Query returns 5000000.

	:ACQuire: INTertype

	Command format
	:ACQuire:INTertype <type>

:ACQuire:INTertype?

	Functional description
	This command is used to set interpolation method of current sampling by the oscilloscope.
Set <type> ::= { SINE | LINE }

	Returned format
	Query returns < type> ::= {SINE| LINE}

	Example
	: ACQuire:INTertype SINE Set sinusoidal interpolation.
: ACQuire:INTertype? Query returns SINE.

2.4 WAVeform commands
WAVeform commands are used to read waveform data and relevant parameters on the oscilloscope screen. These commands mainly include:
:WAVeform:SOURce

:WAVeform:DATA
:WAVeform:DEPTh
The following introduces format, function, and method of use of each above command in details.
	:WAVeform:SOURce

	Command format
	:WAVeform:SOURce <source>

:WAVeform:SOURce?

	Functional description
	This command is used to set oscilloscope data channel.
Set <source> ::= {CHANnel<n>}, in which n=1, 2

	Returned format
	Query returns <source> ::= {CHAN<n>}, in which n=1, 2

	Example
	:WAVeform:SOURce CHANnel1 Set data channel to CHANnel1
:WAVeform:SOURce? Query returns CHAN1.

	:WAVeform:DATA

	Command format
	:WAVeform:DATA?

	Functional description
	This command is used to read waveform data in specified data source; and used along with previous command.

	Returned format
	Return specified waveform data

	Example
	:WAVeform:SOURce CHANnel1 Set data channel to CHANnel1

:WAVeform:DATA? Query returns CH1 waveform data.

	:WAVeform:DEPTh

	Command format
	:WAVeform:DEPTh?

	Functional description
	This command is used to query current instrument memory depth.

	Returned format
	Return Boolean variable < depth> ::= {0 | 1}

	Example
	:WAVeform:DEPTh? Return 1; current oscilloscope adopts ordinary memory.

2.5 MEASure commands
MEASure commands are used for measurement of the most fundamental parameters of the oscilloscope. These commands mainly include:
:MEASure:VMAX?
:MEASure:VMIN?
:MEASure:VPP?
:MEASure:VTOP?
:MEASure:VBASe?
:MEASure:VAMPlitude?
:MEASure:VAVerage?
:MEASure:VRMS?
:MEASure:ROVershot?
:MEASure:FOVershot?
:MEASure:RPReshot?
:MEASure:FPReshot?
:MEASure:FREQuency?
:MEASure:PERiod?
:MEASure:RISetime?

:MEASure:FALLtime?
:MEASure:PWIDth?
:MEASure:NWIDth?
:MEASure:DUTYcycle?

:MEASure:PHASe?
:MEASure:FRR?
:MEASure:FRF?
:MEASure:FFR?
:MEASure:FFF?
:MEASure:LRR?
:MEASure:LRF?
:MEASure:LFR?
:MEASure:LFF?
The following introduces format, function, and method of use of each above command in details.
	:MEASure:VMAX?

	Command format
	:MEASure:VMAX? <source>

	Functional description
	This command is used to measure max. voltage of waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Max. voltage of waveform of specified channel, in V

	Example
	:MEASure:VMAX? CHANnel1 Query CH1 max. voltage

	:MEASure:VMIN?

	Command format
	:MEASure:VMIN? <source>

	Functional description
	This command is used to measure min. voltage of waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Min. voltage of waveform of specified channel, in V

	Example
	:MEASure:VMIN? CHANnel1 Query CH1 min. voltage

	:MEASure:VPP?

	Command format
	:MEASure:VPP? <source>

	Functional description
	This command is used to measure peak-to-peak value of waveform of the specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Peak-to-peak value of waveform of specified channel, in V

	Example
	:MEASure:VPP? CHANnel1 Query CH1 peak-to-peak value

	:MEASure:VTOP?

	Command format
	:MEASure:VTOP? <source>

	Functional description
	This command is used to measure top value of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Top value of the waveform of specified channel, in V

	Example
	:MEASure:VTOP? CHANnel1 Query CH1 top value

	:MEASure:VBASe?

	Command format
	:MEASure:VBASe? <source>

	Functional description
	This command is used to measure base value of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Base value of the waveform of specified channel, in V

	Example
	:MEASure:VBASe? CHANnel1 Query CH1 base value

	:MEASure:VAMPlitude?

	Command format
	:MEASure:VAMPlitude? <source>

	Functional description
	This command is used to measure amplitude of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Amplitude of the waveform of specified channel, in V

	Example
	:MEASure:VAMPlitude? CHANnel1 Query CH1 amplitude

	:MEASure:VAVerage?

	Command format
	:MEASure:VAVerage? [<interval>],[<source>]

	Functional description
	This command is used to measure average value of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

If the following is set, i.e. <interval> ::= CYCLe, this command is used to measure average value of a cycle.

	Returned format
	Average value of the waveform of specified channel, in V

	Example
	:MEASure:VAVerage? CHANnel1 Query CH1 average value
:MEASure:VAVerage? CYCLe,CHANnel1 Query CH1 average value of a cycle

	:MEASure:VRMS?

	Command format
	:MEASure:VRMS? [<interval>],[<source>]

	Functional description
	This command is used to measure RMS value of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

If the following is set, i.e. <interval> ::= CYCLe, this command is used to measure RMS value of a cycle.

	Returned format
	RMS value of the waveform of specified channel, in V

	Example
	:MEASure:VRMS? CHANnel1 Query CH1 RMS value
:MEASure:VRMS? CYCLe,CHANnel1 Query CH1 RMS value of a cycle

	:MEASure:ROVershot?

	Command format
	:MEASure:ROVershot? <source>

	Functional description
	This command is used to measure rise overshot of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Rise overshot of the waveform of specified channel, in %

	Example
	:MEASure:ROVershot? CHANnel1 Query CH1 rise overshot

	:MEASure:FOVershot?

	Command format
	:MEASure:FOVershot? <source>

	Functional description
	This command is used to measure fall overshot of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Fall overshot of the waveform of specified channel, in %

	Example
	:MEASure:FOVershot? CHANnel1 Query CH1 fall overshot

	:MEASure:RPReshot?

	Command format
	:MEASure:RPReshot? <source>

	Functional description
	This command is used to measure rise preshot of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Rise preshot of the waveform of specified channel, in %

	Example
	:MEASure:RPReshot? CHANnel1 Query CH1 rise preshot

	:MEASure:FPReshot?

	Command format
	:MEASure:FPReshot? <source>

	Functional description
	This command is used to measure fall preshot of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Fall preshot of the waveform of specified channel, in %

	Example
	:MEASure:FPReshot? CHANnel1 Query CH1 fall preset

	:MEASure:FREQuency?

	Command format
	:MEASure:FREQuency? <source>

	Functional description
	This command is used to measure frequency of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Frequency of the waveform of specified channel, in Hz

	Example
	:MEASure:FREQuency? CHANnel1 Query CH1 frequency

	:MEASure:PERiod?

	Command format
	:MEASure:PERiod? <source>

	Functional description
	This command is used to measure period of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Period of the waveform of specified channel, in S

	Example
	:MEASure:PERiod? CHANnel1 Query CH1 period

	:MEASure:RISetime?

	Command format
	:MEASure:RISetime? <source>

	Functional description
	This command is used to measure rise time of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Rise time of the waveform of specified channel, in S

	Example
	:MEASure:RISetime? CHANnel1 Query CH1 rise time

	:MEASure:FALLtime?

	Command format
	:MEASure:FALLtime? <source>

	Functional description
	This command is used to measure fall time of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Fall time of the waveform of specified channel, in S

	Example
	:MEASure:FALLtime? CHANnel1 Query CH1 fall time

	:MEASure:PWIDth?

	Command format
	:MEASure:PWIDth? <source>

	Functional description
	This command is used to measure positive pulse width of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Positive pulse width of the waveform of specified channel, in S

	Example
	:MEASure:PWIDth? CHANnel1 Query CH1 positive pulse width

	:MEASure:NWIDth?

	Command format
	:MEASure:NWIDth? <source>

	Functional description
	This command is used to measure negative pulse width of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Negative pulse width of the waveform of specified channel, in S

	Example
	:MEASure:NWIDth? CHANnel1 Query CH1 negative pulse width

	:MEASure:DUTYcycle?

	Command format
	:MEASure:DUTYcycle? <source>

	Functional description
	This command is used to measure duty cycle of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Duty cycle of the waveform of specified channel, in %

	Example
	:MEASure:DUTYcycle? CHANnel1 Query CH1 positive duty cycle

	:MEASure:PHASe?

	Command format
	:MEASure:PHASe? <source>

	Functional description
	This command is used to measure phase difference of the waveform of specified channel with respect to another channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Phase difference of the waveform of specified channel, in °

	Example
	:MEASure:PHASe? CHANnel1 Query CH1 phase difference with respect to CH2

	:MEASure:FRR?

	Command format
	:MEASure:FRR? <source>

	Functional description
	This command is used to measure delayed measured value FRR of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Delayed measured value FRR of the waveform of specified channel, in S

	Example
	:MEASure:FRR? CHANnel1 Query CH1 delayed measured value FRR

	:MEASure:FRF?

	Command format
	:MEASure:FRF? <source>

	Functional description
	This command is used to measure delayed measured value FRF of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Delayed measured value FRF of the waveform of specified channel, in S

	Example
	:MEASure:FRF? CHANnel1 Query CH1 delayed measured value FRF

	:MEASure:FFR?

	Command format
	:MEASure:FFR? <source>

	Functional description
	This command is used to measure delayed measured value FFR of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Delayed measured value FFR of the waveform of specified channel, in S

	Example
	:MEASure:FFR? CHANnel1 Query CH1 delayed measured value FFR

	:MEASure: FFF?

	Command format
	:MEASure: FFF? <source>

	Functional description
	This command is used to measure delayed measured value FFF of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Delayed measured value FFF of the waveform of specified channel, in S

	Example
	:MEASure:FFF? CHANnel1 Query CH1 delayed measured value FFF

	:MEASure:LRR?

	Command format
	:MEASure:LRR? <source>

	Functional description
	This command is used to measure delayed measured value LRR of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Delayed measured value LRR of the waveform of specified channel, in S

	Example
	:MEASure:LRR? CHANnel1 Query CH1 delayed measured value LRR

	:MEASure:LRF?

	Command format
	:MEASure:LRF? <source>

	Functional description
	This command is used to measure delayed measured value LRF of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Delayed measured value LRF of the waveform of specified channel, in S

	Example
	:MEASure:LRF? CHANnel1 Query CH1 delayed measured value LRF

	:MEASure:LFR?

	Command format
	:MEASure:LFR? <source>

	Functional description
	This command is used to measure delayed measured value LFR of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Delayed measured value LFR of the waveform of specified channel, in S

	Example
	:MEASure:LFR? CHANnel1 Query CH1 delayed measured value LFR

	:MEASure:LFF?

	Command format
	:MEASure:LFF? <source>

	Functional description
	This command is used to measure delayed measured value LFF of the waveform of specified channel.
Set <source> ::= CHANnel<n>, n=1, 2

	Returned format
	Delayed measured value LFF of the waveform of specified channel, in S

	Example
	:MEASure:LFF? CHANnel1 Query CH1 delayed measured value LFF

2.6 MARKer commands
MARKer commands are used to set marker parameters for manual tracking measurement of screen waveform data. These commands mainly include:
:MARKer:MODE

:MARKer:TYPE

:MARKer:X1Y1source

:MARKer:X2Y2source

:MARKer:X1Position

:MARKer:X2Position

:MARKer:Y1Position

:MARKer:Y2Position

:MARKer:XDELta

:MARKer:YDELta
The following introduces format, function, and method of use of each above command in details.
	:MARKer:MODE

	Command format
	:MARKer:MODE {OFF | MANual | WAVeform}
:MARKer:MODE?

	Functional description
	This command is used to set system marker mode, which can be OFF, MANUal, or WAVeform (tracking).

	Returned format
	Query to return OFF, MANU, or WAV

	Example
	:MARKer:MODE WAVeform Set system marker mode to tracking
:MARKer:MODE? Query to return WAV

	:MARKer:TYPE

	Command format
	:MARKer:TYPE {VOLTage | TIME}

:MARKer:TYPE?

	Functional description
	This command is used to set type of manual marker: set to VOLTage to display two horizontal marker lines on the screen, and set to TIME to display two vertical marker lines on the screen.

	Returned format
	Query to return VOLT, TIME

	Example
	:MARKer:TYPE VOLTage Set manual marker type to voltage
:MARKer:TYPE? Query to return VOLT

	:MARKer:X1Y1source

	Command format
	:MARKer: X1Y1source {CHANnel<n>}

:MARKer: X1Y1source?

	Functional description
	This command is used to set marker source. If marker mode is manual, source of time marker or voltage marker is set; if marker mode is tracking, source of marker A is set.

	Returned format
	Query to return corresponding marker source CHAN1 or CHAN2

	Example
	:MARKer:X1Y1source CHANnel2 Set marker source to CHANnel2
:MARKer:X1Y1source? Query to return CHAN2

	:MARKer:X2Y2source

	Command format
	:MARKer: X2Y2source {CHANnel<n>}

:MARKer: X2Y2source?

	Functional description
	This command is used to set source of marker B in tracking mode.

	Returned format
	Query to return corresponding marker source CHAN1 or CHAN2

	Example
	:MARKer:X2Y2source CHANnel2 Set marker source to CHANnel2

:MARKer:X2Y2source? Query to return CHAN2

	:MARKer:X1Position

	Command format
	:MARKer:X1Position <position>

:MARKer:X1Position?

	Functional description
	If marker mode is manual, this command is used to set position of marker A in time markers; if marker mode is tracking, this command is used to set position of marker A.

	Returned format
	Query to return corresponding marker time value, in S.

	Example
	:MARKer:X1Position 10uS Set marker A position to 10uS
:MARKer:X1Position? Query to return 0.00001

	:MARKer:X2Position

	Command format
	:MARKer:X2Position <position>

:MARKer:X2Position?

	Functional description
	If marker mode is manual, this command is used to set position of marker B in time markers; if marker mode is tracking, this command is used to set position of marker B.

	Returned format
	Query to return corresponding marker time value, in S.

	Example
	:MARKer:X2Position 10uS Set marker B position to 10uS

:MARKer:X2Position? Query to return 0.00001

	:MARKer:Y1Position

	Command format
	:MARKer:Y1Position <position>

:MARKer:Y1Position?

	Functional description
	If marker mode is manual, this command is used to set position of marker A in voltage markers; if marker mode is tracking, this command is invalid.

	Returned format
	Query to return corresponding marker voltage value, in V

	Example
	:MARKer:X1Position 100mV Set marker A position to 100mV

:MARKer:X1Position? Query to return 0.1

	:MARKer:Y2Position

	Command format
	:MARKer:Y2Position <position>

:MARKer:Y2Position?

	Functional description
	If marker mode is manual, this command is used to set position of marker B in voltage markers; if marker mode is tracking, this command is invalid.

	Returned format
	Query to return corresponding marker voltage value, in V

	Example
	:MARKer:X2Position 100mV Set marker B position to 100mV

:MARKer:X2Position? Query to return 0.1

	:MARKer:XDELta

	Command format
	:MARKer: XDELta?

	Functional description
	If marker mode is manual, this command is used to query time marker difference; if marker mode is tracking, with both marker A and marker B existing, the time difference is returned.

	Returned format
	Query to return corresponding time value, in S.

	Example
	:MARKer:XDELta? Query to return 0.0001

	:MARKer:YDELta

	Command format
	:MARKer: YDELta?

	Functional description
	If marker mode is manual, this command is used to query voltage marker difference; if marker mode is tracking, with both marker A and marker B existing, the voltage difference is returned.

	Returned format
	Query to return corresponding voltage value, in V

	Example
	:MARKer:YDELta? Query to return 0.1

2.7 CHANnel commands
CHANnel commands are used to separately set vertical system of each channel. These commands mainly include the following:
:CHANnel<n>:DISPlay

:CHANnel<n>:SCALe

:CHANnel<n>:OFFSet

:CHANnel<n>:COUPling

:CHANnel<n>:BWLimit

:CHANnel<n>:IMPedance

:CHANnel<n>:PROBe

:CHANnel<n>:VERNier

:CHANnel<n>:INVert

:CHANnel<n>:FILTer:ENABle

:CHANnel<n>:FILTer:TYPE

:CHANnel<n>:FILTer:HIGH

:CHANnel<n>:FILTer:LOW

The following introduces format, function, and method of use of each above command in details.
	:CHANnel<n>:DISPlay

	Command format
	:CHANnel<n>:DISPlay {{1|ON}|{0|OFF}}
:CHANnel<n>:DISPlay?

	Functional description
	This command is used to set or query ON or OFF of specified channel. <n> = 1, 2

	Returned format
	Query to return 1 or 0, representing ON or OFF respectively

	Example
	:CHANnel2:DISPlay ON Display channel 2

:CHANnel2:DISPlay? Query to return 1

	:CHANnel<n>:SCALe

	Command format
	:CHANnel<n>:SCALe <scale>[<suffix>]
:CHANnel<n>:SCALe?

	Functional description
	This command is used to set or query vertical sensitivity (scale) of specified channel. <n>= 1, 2

	Returned format
	Query to return vertical sensitivity voltage value of specified channel, in V/div

	Example
	:CHANnel2:SCALe 1V Set channel 2 vertical sensitivity to 1V/div
:CHANnel2:SCALe? Query to return 1

	:CHANnel<n>:OFFSet

	Command format
	:CHANnel<n>:OFFSet <offset><suffix>

:CHANnel<n>:OFFSet?

	Functional description
	This command is used to set or query vertical offset of specified channel. <n> = 1, 2

	Returned format
	Query to return vertical offset voltage value of specified channel, in V/div

	Example
	:CHANnel2:OFFSet 100mV Set channel 2 offset to 100mV

:CHANnel2:OFFSet? Query to return 0.1

	:CHANnel<n>:COUPling

	Command format
	:CHANnel<n>:COUPling {DC|AC|GND}
:CHANnel<n>:COUPling?

	Functional description
	This command is used to set or query coupling mode of specified channel. DC indicates allowing passing of AC and DC components of input signal. AC indicates prohibiting passing of DC component of input signal. GND (grounded) indicates disconnection of input signal.
<n> = 1, 2

	Returned format
	Query to return AC, DC, or GND

	Example
	:CHANnel2:COUPling AC Set channel 2 coupling mode to AC
:CHANnel2:COUPling? Query to return AC

	:CHANnel<n>:BWLimit

	Command format
	:CHANnel<n>:BWLimit {{1|ON}|{0|OFF}}

:CHANnel<n>:BWLimit?

	Functional description
	This command is used to set bandwidth limiting function to ON (turn on bandwidth limit to 20MHz, so as to reduce display noise) or OFF (turn off bandwidth limit to realize full bandwidth display).

<n> = 1, 2

	Returned format
	Query to return 1 or 0, indicating ON or OFF respectively

	Example
	:CHANnel2:BWLimit ON Turn on bandwidth limit for channel 2

:CHANnel2:BWLimit? Query to return 1

	:CHANnel<n>:IMPedance

	Command format
	:CHANnel<n>:IMPedance {ONEMeg | FIFTy}

:CHANnel<n>:IMPedance?

	Functional description
	This command is used to set or query input impedance of specified channel. ONEMeg indicates input impedance of 1MΩ and FIFTy indicates input impedance of 50Ω.
<n> = 1, 2

	Returned format
	Query to return ONEM or FIFT

	Example
	:CHANnel2:IMPedance FIFTy Set channel 2 input impedance to 50Ω
:CHANnel2:IMPedance? Query to return FIFT

	:CHANnel<n>:PROBe

	Command format
	:CHANnel<n>:PROBe {1 | 10 | 100 | 1000}
:CHANnel<n>:PROBe?

	Functional description
	This command is used to set or query probe attenuation multiple of specified channel.
<n> = 1, 2

	Returned format
	Query to return current probe attenuation multiple

	Example
	:CHANnel2:PROBe 10 Set channel 2 probe attenuation multiple to 10
:CHANnel2:PROBe? Query to return 10

	:CHANnel<n>:VERNier

	Command format
	:CHANnel<n>:VERNier {{1|ON}|{0|OFF}}

:CHANnel<n>:VERNier?

	Functional description
	This command is used to set or query adjustment mode of vertical sensitivity steps. When set to ON, this mode is Fine Adjustment that allows further division of steps of coarse adjustment, to improve vertical resolution. When set to OFF, this mode is Coarse Adjustment that sets vertical sensitivity to steps 1-2-5.
<n> = 1, 2

	Returned format
	Query to return 1 or 0, representing ON or OFF respectively

	Example
	:CHANnel2:VERNier ON Turn on channel 2 fine adjustment
:CHANnel2:VERNier? Query to return 1

	:CHANnel<n>:INVert

	Command format
	:CHANnel<n>:INVert {{1|ON}|{0|OFF}}

:CHANnel<n>:INVert?

	Functional description
	This command is used to set the waveform phase inversion function: ON (turn on waveform phase inversion) or OFF (restore normal display of waveform). <n> = 1, 2

	Returned format
	Query to return 1 or 0, representing ON or OFF respectively

	Example
	:CHANnel2:INVert ON Turn on channel 2 phase inversion function
:CHANnel2:INVert? Query to return 1

	:CHANnel<n>:FILTer:ENABle

	Command format
	:CHANnel<n>:FILTer:ENABle {{1|ON}|{0|OFF}}

:CHANnel<n>:FILTer:ENABle?

	Functional description
	This command is used to set digital filtering function to ON or OFF.

<n> = 1, 2

	Returned format
	Query to return 1 or 0, representing ON or OFF respectively

	Example
	:CHANnel1:FILTer:ENABle ON Turn on channel 1 digital filtering
:CHANnel1:FILTer:ENABle? Query to return 1

	:CHANnel<n>:FILTer:TYPE

	Command format
	:CHANnel<n>:FILTer:TYPE {LPF | HPF |BPF | BNPF}

:CHANnel<n>:FILTer:TYPE?

	Functional description
	This command is used to set or query type of digital filtering of specified channel. Lowpass filter (LPF) indicates passing of frequencies lower than upper limit of filtering. Highpass filter (HPF) indicates passing of frequencies higher than lower limit of filtering. Bandpass filter (BPF) indicates passing of frequencies between upper limit and lower limit of filtering. Band-no-pass filter (BNPF) indicates passing of frequencies higher than the upper limit or lower than the lower limit. <n> = 1, 2

	Returned format
	Query to return LPF, HPF, BPF, or BNPF

	Example
	:CHANnel1:FILTer:TYPE LPF Set channel 1 digital filtering type to LPF
:CHANnel1:FILTer:TYPE? Query to return LPF

	:CHANnel<n>:FILTer:HIGH

	Command format
	:CHANnel<n>:FILTer:HIGH <freq>[<suffix>]
:CHANnel<n>:FILTer:HIGH?

	Functional description
	This command is used to set or query upper limit of digital filtering of specified channel.
<n>= 1, 2

	Returned format
	Query to return upper limit of digital filtering of specified channel, in Hz

	Example
	:CHANnel2:FILTer:HIGH 1KHz Set channel 2 digital filtering upper limit to 1KHz
:CHANnel2:FILTer:HIGH? Query to return 1000

	:CHANnel<n>:FILTer:LOW

	Command format
	:CHANnel<n>:FILTer:LOW <freq>[<suffix>]

:CHANnel<n>:FILTer:LOW?

	Functional description
	This command is used to set or query lower limit of digital filtering of specified channel.
<n>= 1, 2

	Returned format
	Query to return lower limit of digital filtering of specified channel, in Hz

	Example
	:CHANnel2:FILTer:LOW 1KHz Set channel 2 digital filtering lower limit to 1KHz

:CHANnel2:FILTer:LOW? Query to return 1000

2.8 TIMebase commands
TIMebase commands are used to change horizontal scale (time base) and trigger horizontal position in the memory (triggering of displacement). Change of horizontal scale will zoom the waveform with respect to center of the screen, while change of horizontal position will result in offset of position of this center. These commands mainly include the following:
:TIMebase:SCALe
:TIMebase:POSition

:TIMebase:WINDowzoom
The following introduces format, function, and method of use of each above command in details.
	:TIMebase:SCALe

	Command format
	:TIMebase:SCALe <scale>[<suffix>]
:TIMebase:SCALe?

	Functional description
	This command is used to set or query horizontal time base.

	Returned format
	Query to return current horizontal time base, in S/div

	Example
	:TIMebase:SCALe 100uS Set horizontal time base to 100uS/div

:TIMebase:SCALe? Query to return 0.0001

	:TIMebase:POSition

	Command format
	:TIMebase:POSition <pos>[<suffix>]

:TIMebase:POSition?

	Functional description
	This command is used to set or query horizontal triggering position.

	Returned format
	Query to return current horizontal triggering position, in S

	Example
	:TIMebase:POSition 100uS Set horizontal time base to 100uS

:TIMebase:POSition? Query to return 0.0001

	:TIMebase:WINDowzoom

	Command format
	:TIMebase:WINDowzoom {{1|ON}|{0|OFF}}

:TIMebase:WINDowzoom?

	Functional description
	This command is used to set window zooming function to ON or OFF.

	Returned format
	Query to return 1 or 0, representing ON or OFF respectively

	Example
	:TIMebase:WINDowzoom ON Turn on window zooming
:TIMebase:WINDowzoom? Query to return 1

2.9 TRIGger commands
The triggering system allows stable acquisition and display of truly significant waveform by the oscilloscope. Triggering determines when the oscilloscope starts to acquire data and display waveform. Once triggering is set correctly, it can convert unstable display to significant waveform.
Digital oscilloscope triggering modes include Edge, Glitch, TV, Slope, and Alternation.
These commands mainly include the following:
Control of triggering:
:TRIGger:FORCe

:TRIGger:LEVel:ASETup

:TRIGger:SWEep

:TRIGger:MODE

:TRIGger:COUPling

:TRIGger:HOLDoff

:TRIGger:LEVel

Edge triggering:
:TRIGger:EDGE:SOURce

:TRIGger:EDGE:SLOPe

Glitch triggering:
:TRIGger:GLITch:SOURce

:TRIGger:GLITch:QUALifier

:TRIGger:GLITch:WIDTh
TV triggering:
:TRIGger:TV:SOURce

:TRIGger:TV:POLarity

:TRIGger:TV:STANdard

:TRIGger:TV:MODE

:TRIGger:TV:LINE

Slope triggering:
:TRIGger:SLOPe:SOURce

:TRIGger:SLOPe:QUALifier

:TRIGger:SLOPe:TIME

:TRIGger:SLOPe:WINDow
Alternation triggering:
:TRIGger: ALTernation:SOURce

:TRIGger: ALTernation:MODE
:TRIGger:ALTernation:EDGE:SLOPe

:TRIGger:ALTernation:GLITch:QUALifier

:TRIGger:ALTernation:GLITch:WIDTh

:TRIGger:ALTernation:TV:POLarity

:TRIGger:ALTernation:TV:STANdard

:TRIGger:ALTernation:TV:MODE

:TRIGger:ALTernation:TV:LINE

:TRIGger:ALTernation:SLOPe:QUALifier

:TRIGger:ALTernation:SLOPe:TIME

:TRIGger:ALTernation:SLOPe:WINDow

The following introduces format, function, and method of use of each above command in details.
	:TRIGger:FORCe

	Command format
	:TRIGger:FORCe

	Functional description
	When the oscilloscope finds no suitable triggering condition, this command is executed to force a triggering signal so that the input waveform is triggered and displayed.

	Note
	This command is mainly used for two triggering ways: “NORMal” and “SINGle”.

	:TRIGger:LEVel:ASETup

	Command format
	:TRIGger:LEVel:ASETup

	Functional description
	This command is executed to set the triggering level at vertical middle point of signal amplitude.

	:TRIGger:SWEep

	Command format
	:TRIGger:SWEep {AUTO | NORMal | SINGle}

:TRIGger:SWEep?

	Functional description
	This command is used to set triggering way. AUTO: with triggering condition not available, triggering signal will be generated inside to force triggering. NORMal: triggering only allowed when triggering condition is satisfied. SINGle: when triggering condition is met, trigger for one time and then stop.

	Returned format
	Query to return AUTO, NORM, or SING

	Example
	:TRIGger:SWEep NORMal Set triggering way to NORMal
:TRIGger:SWEep? Query to return NORM

	:TRIGger:MODE

	Command format
	:TRIGger:MODE {EDGE |GLITch | TV | SLOPe | ALTernation}

:TRIGger:MODE?

	Functional description
	This command is used to set triggering mode, namely EDGE, GLITch, TV, SLOPe, or ALTernation

	Returned format
	Query to return EDGE, GLIT, TV, SLOP, or ALT

	Example
	:TRIGger:MODE EDGE Set triggering mode to EDGE
:TRIGger:MODE? Query to return EDGE

	:TRIGger:COUPling

	Command format
	:TRIGger:COUPling {DC | AC | HFReject | LFReject }
:TRIGger:COUPling?

	Functional description
	This command is used to set trigger coupling mode. DC: allow passing of all signal components. AC: block DC component and attenuate signals below 50Hz. High frequency rejection (HFR): block DC component and attenuate high frequency components (higher than 150kHz). Low frequency rejection (LFR): block DC component and attenuate low frequency components (lower than 7kHz).

	Returned format
	Query to return DC, AC, HFR, or LFR

	Example
	:TRIGger:COUPling AC Set trigger coupling mode to AC
:TRIGger:COUPling? Query to return AC

	:TRIGger:HOLDoff

	Command format
	:TRIGger:HOLDoff <holdoff>

:TRIGger:HOLDoff?

	Functional description
	This command is used to set trigger holdoff time, which refers to time of waiting for enabling trigger circuit again by the oscilloscope. During trigger holdoff, the oscilloscope will not be triggered, till end of holdoff. Value range of <holdoff> is 100ns~10s.

	Returned format
	Query to return holdoff, in S

	Example
	:TRIGger:HOLDoff 1uS Set trigger holdoff to 1uS
:TRIGger:HOLDoff? Query to return 0.000001

	:TRIGger:LEVel

	Command format
	:TRIGger:LEVel <level>

:TRIGger:LEVel?

	Functional description
	This command is used to set triggering point signal voltage for triggering modes Edge, Glitch, TV, and Slope. Value range of <level> is ±10*Scale (Scale is vertical sensitivity of the trigger channel).

	Returned format
	Query to return trigger voltage, in V

	Example
	:TRIGger:LEVel 2V Set trigger level to 2V
:TRIGger:LEVel? Query to return 2.0

	:TRIGger:EDGE:SOURce

	Command format
	:TRIGger:EDGE:SOURce <source>

<source> ::= {CHANnel<n> | EXTernal | EXTernal5 | ACLine}

:TRIGger:EDGE:SOURce?

	Functional description
	This command is used to set source of Edge triggering, which can be input channel (CHANnel1, CHANnel2), external trigger (EXTernal, EXTernal5), or ACLine (commercial power supply).

	Returned format
	Query to return CHAN1, CHAN2, EXT, EXT5, or ACL

	Example
	:TRIGger:EDGE:SOURce EXT Set trigger source to EXT
:TRIGger:EDGE:SOURce? Query to return EXT

	:TRIGger:EDGE:SLOPe

	Command format
	:TRIGger:EDGE:SLOPe {NEGative | POSitive | ALTernation}
:TRIGger:EDGE:SLOPe?

	Functional description
	This command is used to set slope of Edge triggering: POSitive, NEGative, or ALTernation.

	Returned format
	Query to return NEG, POS, or ALT

	Example
	:TRIGger:EDGE:SLOPe NEGative Set Edge slope to NEGative
:TRIGger:EDGE:SLOPe? Query to return NEG

	:TRIGger:GLITch:SOURce

	Command format
	:TRIGger: GLITch:SOURce <source>

<source> ::= {CHANnel<n> | EXTernal | EXTernal5}

:TRIGger: GLITch:SOURce?

	Functional description
	This command is used to set source of Glitch triggering, which can be input channel (CHANnel1, CHANnel2) or external triggering (EXTernal, EXTernal5).

	Returned format
	Query to return CHAN1, CHAN2, EXT, or EXT5

	Example
	:TRIGger:GLITch:SOURce EXT Set trigger source to EXT

:TRIGger:GLITch:SOURce? Query to return EXT

	:TRIGger:GLITch:QUALifier

	Command format
	:TRIGger:GLITch:QUALifier <operator>
<operator> ::= {PGReaterthan|PLESsthan|PEQUal|

NGReaterthan|NLESsthan|NEQUal}

:TRIGger:GLITch:QUALifier?

	Functional description
	This command is used to set Glitch trigger qualifier, which can be PGReaterthan (greater than positive pulse width), PLESsthan (less than positive pulse width), PEQUal (equal to positive pulse width), NGReaterthan (greater than negative pulse width), NLESsthan (less than negative pulse width), or NEQUal (equal to negative pulse width).

	Returned format
	Query to return PGRe, PLES, PEQU, NGRe, NLES, or NEQU

	Example
	:TRIGger:GLITch:QUALifier PGReaterthan

Set glitch qualifier to greater than positive pulse width
:TRIGger:GLITch:QUALifier? Query to return PGRe

	:TRIGger:GLITch:WIDTh

	Command format
	:TRIGger:GLITch:WIDTh <width>

:TRIGger:GLITch:WIDTh?

	Functional description
	This command is used to set Glitch trigger pulse width.

	Returned format
	Query to return pulse width, in S

	Example
	:TRIGger:GLITch:WIDTh 100uS Set pulse width to 100uS

:TRIGger:GLITch:WIDTh? Query to return 0.0001

	:TRIGger:TV:SOURce

	Command format
	:TRIGger:TV:SOURce <source>

<source> ::= {CHANnel<n> | EXTernal | EXTernal5}

:TRIGger:TV:SOURce?

	Functional description
	This command is used to set source of TV triggering, which can be input channel (CHANnel1, CHANne2) or external triggering (EXTernal, EXTernal5).

	Returned format
	Query to return CHAN1, CHAN2, EXT, or EXT5

	Example
	:TRIGger:TV:SOURce EXT Set trigger source to EXT

:TRIGger:TV:SOURce? Query to return EXT

	:TRIGger:TV:POLarity

	Command format
	:TRIGger:TV:POLarity {NEGative | POSitive}

:TRIGger:TV:POLarity?

	Functional description
	This command is used to set polarity of TV triggering, which can be POSitive (applicable for video signals of low black level) or NEGative (applicable for video signals of high black level).

	Returned format
	Query to return NEG or POS

	Example
	:TRIGger:TV:POLarity NEGative Set trigger polarity to Negative
:TRIGger:TV:POLarity? Query to return NEG

	:TRIGger:TV:STANdard

	Command format
	:TRIGger:TV:STANdard {NTSC | PAL}

:TRIGger:TV:STANdard?

	Functional description
	This command is used to set standard of TV triggering, which can be NTSC or PAL.

	Returned format
	Query to return NTSC or PAL

	Example
	:TRIGger:TV:STANdard NTSC Set trigger standard to NTSC
:TRIGger:TV:STANdard? Query to return NTSC

	:TRIGger:TV:MODE

	Command format
	:TRIGger:TV:MODE {FIEld1 | FIEld2 | ALINes | LINE }
:TRIGger:TV:MODE?

	Functional description
	This command is used to set synchronous mode of TV triggering, which can be FIEld1 (odd field), FIEld2 (even field), ALINes (all lines), or LINE (specified line).

	Returned format
	Query to return FIE1, FIE2, ALIN, or LINE

	Example
	:TRIGger:TV:MODE LINE Set TV trigger synchronous mode to LINE
:TRIGger:TV:MODE? Query to return LINE

	:TRIGger:TV:LINE

	Command format
	:TRIGger:TV:LINE <line_number>
:TRIGger:TV:LINE?

	Functional description
	This command is used to set number of lines for line trigger specified by TV triggering. If TV triggering standard is NTSC, maximum number of lines is 525. If TV triggering standard is PAL, maximum number of lines is 625.

	Returned format
	Query to return number of lines (an integer)

	Example
	:TRIGger:TV:LINE 128 Set lines specified by trigger to 128
:TRIGger:TV:LINE? Query to return 128

	:TRIGger:SLOPe:SOURce

	Command format
	:TRIGger:SLOPe:SOURce <source>

<source> ::= {CHANnel<n> | EXTernal | EXTernal5}

:TRIGger:SLOPe:SOURce?

	Functional description
	This command is used to set source of Slope triggering, which can be input channel (CHANnel1, CHANnel2) or external trigger (EXTernal, EXTernal5).

	Returned format
	Query to return CHAN1, CHAN2, EXT, or EXT5

	Example
	:TRIGger:SLOPe:SOURce EXT Set trigger source to EXT

:TRIGger:SLOPe:SOURce? Query to return EXT

	:TRIGger:SLOPe:QUALifier

	Command format
	:TRIGger:SLOPe:QUALifier <operator>

<operator> ::= {PGReaterthan|PLESsthan|PEQUal|

NGReaterthan|NLESsthan|NEQUal}

:TRIGger:SLOPe:QUALifier?

	Functional description
	This command is used to set Slope triggering qualifier, which can be PGReaterthan (greater than positive pulse width), PLESsthan (less than positive pulse width), PEQUal (equal to positive pulse width), NGReaterthan (greater than negative pulse width), NLESsthan (less than negative pulse width), or NEQUal (equal to negative pulse width).

	Returned format
	Query to return PGRe, PLES, PEQU, NGRe, NLES, or NEQU

	Example
	:TRIGger:SLOPe:QUALifier PGReaterthan Set Slope Qualifier to greater than positive slope
:TRIGger:SLOPe:QUALifier? Query to return PGRe

	:TRIGger:SLOPe:TIME

	Command format
	:TRIGger:SLOPe:TIME <time>

:TRIGger:SLOPe:TIME?

	Functional description
	This command is used to set time width of Slope triggering.

	Returned format
	Query to return time width, in S

	Example
	:TRIGger:SLOPe:TIME 100uS Set time width to 100uS

:TRIGger:SLOPe:TIME? Query to return 0.0001

	:TRIGger:SLOPe:WINDow

	Command format
	:TRIGger:SLOPe:WINDow {ABOVe | BELOw | ALTernation}

:TRIGger:SLOPe:WINDow?

	Functional description
	This command is used to set type of window of Slope triggering, which can be ABOVe (upper boundary), BELOw (lower boundary), or ALTernation (upper/lower boundaries).

	Returned format
	Query to return ABOV, BELO, or ALT

	Example
	:TRIGger:SLOPe:WINDow BELOw Set trigger window to lower boundary
:TRIGger:SLOPe:WINDow? Query to return BELO

	:TRIGger:ALTernation:SOURce

	Command format
	:TRIGger:ALTernation:SOURce {CHANnel1 | CHANnel2}

:TRIGger:ALTernation:SOURce?

	Functional description
	This command is used to set source of Alternation triggering, which can be CHANnel1 or CHANnel2.

	Returned format
	Query to return CHAN1, CHAN2

	Example
	:TRIGger:ALTernation:SOURce CHANne1 Set Alternation trigger source to CHANnel1
:TRIGger:ALTernation:SOURce? Query to return CHAN1

	:TRIGger:ALTernation:MODE

	Command format
	:TRIGger:ALTernation:MODE {EDGE| GLITch | TV | SLOPe}
:TRIGger:ALTernation:MODE?

	Functional description
	This command is used to set trigger mode of Alternation triggering, which can be EDGE, GLITch, TV, or SLOPe.

	Returned format
	Query to return EDGE, GLIT, TV, or SLOP

	Example
	:TRIGger:ALTernation:MODE GLITch Set Alternation trigger mode to GLITch
:TRIGger:ALTernation:MODE? Query to return GLIT

	:TRIGger:ALTernation:EDGE:SLOPe

	Command format
	:TRIGger:ALTernation:EDGE:SLOPe <slope>
<slope> ::= {NEGative | POSitive | ALTernation}

:TRIGger:ALTernation:EDGE:SLOPe?

	Functional description
	This command is used to set edge slope when Alternation trigger mode is Edge, which can be POSitive (rising edge), NEGative (falling edge), or ALTernation (rising/falling edge).

	Returned format
	Query to return NEG, POS, or ALT

	Example
	:TRIGger:ALTernation:EDGE:SLOPe NEGative
Set edge slope to NEGative
:TRIGger:ALTernation:EDGE:SLOPe? Query to return NEG

	:TRIGger: ALTernation:GLITch:QUALifier

	Command format
	:TRIGger:ALTernation:GLITch:QUALifier <operator>

<operator> ::= {PGReaterthan|PLESsthan|PEQUal|

NGReaterthan|NLESsthan|NEQUal}

:TRIGger: ALTernation:GLITch:QUALifier?

	Functional description
	This command is used to set Glitch triggering qualifier when trigger mode in Alternation triggering is Glitch, which can be PGReaterthan (greater than positive pulse width), PLESsthan (less than positive pulse width), PEQUal (equal to positive pulse width), NGReaterthan (greater than negative pulse width), NLESsthan (less than negative pulse width), or NEQUal (equal to negative pulse width).

	Returned format
	Query to return PGRe, PLES, PEQU, NGRe, NLES, or NEQU

	Example
	:TRIGger: ALTernation:GLITch:QUALifier PGReaterthan

Set Glitch qualifier to greater than positive pulse width
:TRIGger: ALTernation:GLITch:QUALifier? Query to return PGRe

	:TRIGger:ALTernation:GLITch:WIDTh

	Command format
	:TRIGger:ALTernation:GLITch:WIDTh <width>

:TRIGger:ALTernation:GLITch:WIDTh?

	Functional description
	This command is used to set pulse width of Alternation triggering when the trigger mode is Glitch trigger.

	Returned format
	Query to return pulse width, in S

	Example
	:TRIGger:ALTernation:GLITch:WIDTh 100uS

Set pulse width to 100uS

:TRIGger:ALTernation:GLITch:WIDTh? Query to return 0.0001

	:TRIGger: ALTernation:TV:STANdard

	Command format
	:TRIGger:ALTernation:TV:STANdard {NTSC | PAL}

:TRIGger:ALTernation:TV:STANdard?

	Functional description
	This command is used to set TV triggering standard when Alternation trigger mode is TV triggering, which can be NTSC or PAL.

	Returned format
	Query to return NTSC or PAL

	Example
	:TRIGger:ALTernation:TV:STANdard NTSC Set trigger standard to NTSC

:TRIGger:ALTernation:TV:STANdard? Query to return NTSC

	:TRIGger:ALTernation:TV:POLarity

	Command format
	:TRIGger:ALTernation:TV:POLarity {NEGative | POSitive}

:TRIGger:ALTernation:TV:POLarity?

	Functional description
	This command is used to set polarity of TV triggering when Alternation trigger mode is TV triggering, which can be POSitive (applicable for video signals of low black level) or NEGative (applicable for video signals of high black level).

	Returned format
	Query to return NEG or POS

	Example
	:TRIGger:ALTernation:TV:POLarity NEGative
Set trigger polarity to Negative
:TRIGger:ALTernation:TV:POLarity? Query to return NEG

	:TRIGger:ALTernation:TV:MODE

	Command format
	:TRIGger:ALTernation:TV:MODE {FIEld1 | FIEld2 | ALINes | LINE }

:TRIGger:ALTernation:TV:MODE?

	Functional description
	This command is used to set synchronous mode when Alternation trigger mode is TV triggering, which can be FIEld1 (odd field), FIEld2 (even field), ALINes (all lines), or LINE (specified line).

	Returned format
	Query to return FIE1, FIE2, ALIN, or LINE

	Example
	:TRIGger:ALTernation:TV:MODE LINE
Set trigger synchronous mode to LINE

:TRIGger:ALTernation:TV:MODE? Query to return LINE

	:TRIGger:ALTernation:TV:LINE

	Command format
	:TRIGger:ALTernation:TV:LINE <line_number>

:TRIGger:ALTernation:TV:LINE?

	Functional description
	This command is used to set number of lines for specified line trigger when Alternation triggering mode is TV triggering. If TV trigger standard is NTSC, maximum number of lines is 525. If TV trigger standard is PAL, maximum number of lines is 625.

	Returned format
	Query to return number of lines (an integer)

	Example
	:TRIGger:ALTernation:TV:LINE 128
Set lines specified by trigger to 128
:TRIGger:ALTernation:TV:LINE? Query to return 128

	:TRIGger:ALTernation:SLOPe:QUALifier

	Command format
	:TRIGger:ALTernation:SLOPe:QUALifier <operator>

<operator> ::= {PGReaterthan | PLESsthan | PEQUal |
NGReaterthan | NLESsthan | NEQUal}

:TRIGger:ALTernation:SLOPe:QUALifier?

	Functional description
	This command is used to set Slope qualifier when Alternation triggering mode is Slope trigger, which can be PGReaterthan (greater than positive pulse width), PLESsthan (less than positive pulse width), PEQUal (equal to positive pulse width), NGReaterthan (greater than negative pulse width), NLESsthan (less than negative pulse width), or NEQUal (equal to negative pulse width).

	Returned format
	Query to return PGRe, PLES, PEQU, NGRe, NLES, or NEQU

	Example
	:TRIGger: ALTernation:SLOPe:QUALifier PGReaterthan

Set Slope qualifier to greater than positive slope
:TRIGger: ALTernation:SLOPe:QUALifier? Query to return PGRe

	:TRIGger:ALTernation:SLOPe:TIME

	Command format
	:TRIGger:ALTernation:SLOPe:TIME <time>

:TRIGger:ALTernation:SLOPe:TIME?

	Functional description
	This command is used to set time width of Alternation triggering when the trigger mode is Slope triggering.

	Returned format
	Query to return time width, in S

	Example
	:TRIGger:ALTernation:SLOPe:TIME 1uS Set time width to 1uS

:TRIGger:ALTernation:SLOPe:TIME? Query to return 0.000001

	:TRIGger:ALTernation:SLOPe:WINDow

	Command format
	:TRIGger:ALTernation:SLOPe:WINDow {ABOVe | BELOw | EITHer}

:TRIGger:ALTernation:SLOPe:WINDow?

	Functional description
	This command is used to set type of window of Alternation triggering when the trigger mode is Slope triggering, which can be ABOVe, BELOw, or ALTernation.

	Returned format
	Query to return ABOV, BELO, or ALT

	Example
	:TRIGger:ALTernation:SLOPe:WINDow BELOw
Set window type to BELOw
:TRIGger:ALTernation:SLOPe:WINDow? Query to return BELO

2.10 KEY commands
KEY commands are used to control keys and knobs on the virtual panel. Different keys are controlled via setting different key assignments. The command format is as follows:
	:KEY

	Command format
	:KEY <key_num>

	Functional description
	These commands are used to control keys and knobs on the virtual panel.
Among them, key assignment corresponding to each key is given below:
[PRINT] 0x01

[F1] 0x05

[F2] 0x03

[F3] 0x04

[F4] 0x02

[F5] 0x07

[MENU] 0x0c

[CURSOR] 0x10

[ACQUIRE] 0x0b

[SAVE] 0x1a

[MEASURE] 0x13

[DISPLAY] 0x0e

[UTILITY] 0x1d

[DEFAULT] 0x08

[HELP] 0x06

[CH1] 0x0a

[CH2] 0x18

[MATH] 0x0d

[REF] 0x17

[HORIMENU] 0x11

[SINGLE] 0x12

[RUNSTOP] 0x09

[AUTO] 0x1c

[TRIGMENU] 0x15

[SET TO 50%] 0x16

[FORCE] 0x1b

Key assignments corresponding to left-handed rotation, right-handed rotation, and pressing-down of each knob are given below:
[FUNC_LEFT] 0x30

[FUNC_RIGHT] 0x2f

[FUNC_RESET] 0x38

[CH1_SEN_LEFT] 0x29

[CH1_SEN_RIGHT] 0x2a

[CH1_SEN_RESET] 0x35

[CH1_POS_LEFT] 0x2e

[CH1_POS_RIGHT] 0x2d

[CH1_POS_RESET] 0x37

[CH2_SEN_LEFT] 0x27

[CH2_SEN_RIGHT] 0x28

[CH2_SEN_RESET] 0x34

[CH2_POS_LEFT] 0x2c

[CH2_POS_RIGHT] 0x2b

[CH2_POS_RESET] 0x36

[HORIZ_SEN_LEFT] 0x25

[HORIZ_SEN_RIGHT] 0x26

[HORIZ_SEN_RESET] 0x33

[HORIZ_POS_LEFT] 0x22

[HORIZ_POS_RIGHT] 0x21

[HORIZ_POS_RESET] 0x31

[TRIG_LEVEL_LEFT] 0x24

[TRIG_LEVEL_RIGHT] 0x23

[TRIG_LEVEL_RESET] 0x32

	Example
	:KEY 0x1c Set key assignment to 28, corresponding to pressing key [AUTO]

2.11 Other command
:PRODucttype

This command is used to query product model.
Chapter III Programming guide
This chapter guides user to use Microsoft Visual Studio 2010 development tool codes and SCPI commands to realize programmed control of this oscilloscope.
Said programming is realized based on Virtual Instrument Software Architecture (VISA) library, which is an application programming interface used to control instruments and allows user to easily develop testing applications irrelevant to type of instrument and type of interface, without the need to understand how the interface bus works. For details, refer to the help file of NI-VISA.
3.1 Programming based on USBTMC interface
3.1.1 Preparation
1. Preparation of hardware environment
In this section, USB interface of the oscilloscope is used for communication with PC. Please use USB data wire to connect USB Device interface on oscilloscope rear panel to the PC.
After correct connection of the oscilloscope to the PC, turn on instrument power supply. At this time, dialog box “hardware update guide” will pop up on the PC. Follow prompt by the guide to install “USB Test and Measurement Device”.
2. Preparation of software environment
Please confirm installation of VISA library of NI (download from NI website http://www.ni.com/china) on your computer. In this document, default installation path is C:\Program Files\IVIFoundation\VISA.
3.1.2 Use Visual Studio 2010 for programming
Enter programming environment Visual Studio 2010; use the following steps:
1. Establish a dialog based MFC project “DSO_Demo”.
2. Add VISA library; open dialog box Project→DSO_Demo Properties Pages
① Under Configuration Properties → General, set Character Set to “Use Multi-Byte Character Set”, as shown in Fig.3-1.
② Under Configuration Properties → VC++ Directories, set path of Include Directories to: C:\Program Files\IVI Foundation\VISA\WinNT\includem, and path of Library Directories to: C:\Program Files\IVI Foundation\VISA\WinNT\lib\msc, as shown in Fig.3-2.
③ Under Configuration Properties → Linker → General, set path of Additional Library Directories to: C:\Program Files\IVI Foundation\VISA\WinNT\lib, as shown in Fig.3-3.
[image: image1.png]
Fig.3-1 Set Character Set
[image: image2.png]
Fig.3-2 Add VISA library (1)
[image: image3.png]
Fig.3-3 Add VISA library (2)
3. Add widget to dialog box body and modify its attributes, as shown in Fig.3-4. The three Edit boxes have ID of IDC_EDIT_ADDRESS, IDC_EDIT_CMD, and IDC_EDIT_RESPONSE respectively. Add response function to the five buttons respectively.
[image: image4.png]
Fig.3-4 Resource of dialog box
4. Add codes
First make a statement in header file for VISA library “#include <visa.h>”, load visa32.lib in mother file, and then define VISA related variables in the header file:
public:

ViSession defaultRM;

ViSession instr;

ViUInt32 numInstrs;

ViFindList findList;

ViUInt32 retCount;

ViUInt32 writeCount;

ViStatus status;

ViChar instrResourceString[256];

Response function codes under each button are as follows:
Button Init Visa:
void CDSO_DemoDlg::OnBnClickedButtonInitVisa()

{

// TODO: Add your control notification handler code here

Status = viOpenDefaultRM (&defaultRM);

if (status < VI_SUCCESS)

{

defaultRM = 0;

MessageBox(_T("Please confirm correct installation of VISA drive library"),_T("Failure of VISA initialization"), MB_ICONERROR);

return;

}

}
Button Connect:
void CDSO_DemoDlg::OnBnClickedButtonConnect()

{

// TODO: Add your control notification handler code here

CString strAddress;

status = viFindRsrc(defaultRM, "USB?*INSTR", &findList, &numInstrs, instrResourceString);

if (status < VI_SUCCESS)

{

MessageBox(_T("Connected device not found"),_T("Failure to find instrument"), MB_ICONERROR);

viClose (defaultRM);

return;

}

status = viOpen (defaultRM, instrResourceString, VI_NULL, VI_NULL, &instr);

if (status < VI_SUCCESS)

{

instr = 0;

MessageBox(_T("Please confirm normal hardware connection"),_T("Connection failure"), MB_ICONERROR);

return;

}

strAddress.Format(_T("%s"), instrResourceString);

GetDlgItem(IDC_EDIT_ADDRESS)->SetWindowText(strAddress);

}

Button Write:
void CDSO_DemoDlg::OnBnClickedButtonWrite()

{

// TODO: Add your control notification handler code here

char *SendBur = NULL;

CString strCmd;

GetDlgItem(IDC_EDIT_CMD)->GetWindowText(strCmd);

strCmd += "\n";

SendBur = strCmd.GetBuffer(strCmd.GetLength());

strcpy_s(SendBur,strlen(SendBur) + 1,strCmd);

status = viWrite(instr, (unsigned char*)SendBur, strlen(SendBur), &writeCount);

if (status < VI_SUCCESS)

{

MessageBox(_T("Failure to write command to instrument"));

return;

}

}

Button Read:
void CDSO_DemoDlg::OnBnClickedButtonRead()

{

// TODO: Add your control notification handler code here

unsigned char RecBuf[1024];

CString pstrResult;

memset(RecBuf,0,1024);

status = viRead(instr, RecBuf, 1024, &retCount);

if (status < VI_SUCCESS)

{

pstrResult = "";

}

else

{

pstrResult.Format("%s", RecBuf);

}

GetDlgItem(IDC_EDIT_RESPONSE)->SetWindowText(pstrResult);

}

Button Exit:
void CDSO_DemoDlg::OnBnClickedButtonExit()

{

// TODO: Add your control notification handler code here

if (instr != 0)

{

viClose(instr);

}

if (defaultRM != 0)

{

viClose(defaultRM);

}

EndDialog(IDCANCEL);

}

5. Run program
(1) Click “Init Visa” to initialize VASA environment
(2) Click “Connect” to connect and turn on the instrument
(3) In Edit box Command, input SCPI command and click “Write” to write command to the instrument
(4) Click “Read” to read corresponding information from the instrument
Results of running are shown in Fig.3-5.
[image: image5.png]
Fig.3-5 Results of running
3.2 Programming based on COM interface
3.2.1 Preparation
1. Preparation of hardware environment
In this section, COM interface of the oscilloscope is used for communication with the PC. Please use a serial port wire to connect COM interface on oscilloscope rear panel to one COM port of the PC.
2. Preparation of software environment
Please confirm installation of VISA library of NI (download from NI website http://www.ni.com/china) on your computer. In this document, default installation path is: C:\Program Files\IVI Foundation\VISA.
3. Use tool “Measurement & Automation Explorer” to configure NI-VISA

Run “Measurement & Automation Explorer”, select “COM3” in the left side list, and then modify baud rate to 19200 in the attributes setting panel at the right side so that it is consistent with baud rate of the salve station computer. Click “Save”, as shown in Fig.3-6.
[image: image6.png]
Fig.3-6 Configure COM attributes
3.2.2 Use Visual Studio 2010 for programming
Directly use the program of section 3.1.2 and only modify device finding function in response function under button Connect to “status = viFindRsrc(defaultRM, "ASRL?*INSTR", &findList, &numInstrs, instrResourceString);”. Results of running:
[image: image7.png]
Fig.3-7 Results of running

