

Experiência, competência e inovação sempre a seu lado

MANUAL DE INSTRUÇÕES

SONÔMETRO DIGITAL PORTÁTIL MOD. DEC-7000

Índice

1.Introdução 1 1 Aplicações	1 1
2 Características	1
3 Especificações Técnicas	2
3.1Informações para Testes Periódicos.	5
4.Descrição do instrumento.	6
5.Descrição das teclas	7
5.1.Ligar /Desligar	7
5.2.Esc/Voltar	7
5.3.Enter	7
5.4.Iniciar/Parar	8
5.5.Tecla< ▲ >	8
5.6.Tecla<▼>	8
5.7.Tecla< 4 >	8
5.8.Tecla<▶>	8
5.9.Menu/Pausa	8
6.Conector do microfone	8
6.1.Proteção contra o vento	10
6.2 Correções da influência do protetor de vento	10
7.Conector de dados e de alimentação de energia	11
7.1.PWR	11
7.2.Mini USB	11
7.3.Micro SD	12
7.4.RS-232	12
7.5.Trigger	12
7.6.DC OUT	13
7.7.AC OUT	13
8.Compartimento da bateria	13
9.GPS	14
10. l ela de medição	15
10.1.Descrição do display LCD	15
10.2. I ela de modo de medição de nivel	1/
10.3. I ela do modo de banda de oitava	19
10.4. I ela do modo de $1/3$ de oltava	20
11. Operação e configuração do menu	21
11.1.Arvore do menu	22
11.2. Fullçau	22
11.3. Udilbidçidu	23
11.2.1. Calibração por fator do colibração	23
	24

Índice

11.4.Medição	26
11.4.1.Configuração do MEA S	27
11.4.2.faixa de MEA S	30
11.4.3.Energia de ICCP	31
11.4.4.Perfil 1~3	31
11.4.5.Limite de alarme	32
11.4.6.Função estendida	32
11.4.7.Estatística	33
11.4.8.Histórico de tempo	33
11.4.9.Limite de oitava	34
11.4.10.Medições personalizadas	34
11.4.11.Timer	35
11.5.Configuração	37
11.5.1.Contraste	37
11.5.2.Bateria	38
11.5.3.Trigger	38
11.5.4.Data e hora	39
11.5.5.Desligamento automático	40
11.5.6.RS-232	40
11.5.7.Gerenciamento de arquivos	41
11.5.8.Modo de inicialização.	43
11.5.9.Modo USB	44
11.5.10.GPS	45
11.5.11.Modo de configuração	45
11.6.Idioma	46
11.7.Saída	46
11.7.1.Nível do medidor DC OUT	47
11.7.2.Saída DC de banda de oitava	47
11.7.3.Impressora	48
11.8.Configuração de fábrica	48
Anexo 1 - Correções para os efeitos típicos das reflexões do caso do medidor	
de nível de som e difração do som ao redor do microfone	49
Anexo 2 - Correções do protetor de vento para campo livre	
Anexo 3 Correções do Atuador Eletrostático	51
12 Lista de Acessórios	. 52
	02

1. Introdução

O **DEC-7000** é o medidor de nível sonoro de alta precisão, sendo a escolha ideal para executar muitos tipos de medições, por exemplo, ruído ambiental, ruído veicular e aplicações industriais.

Com um único chip ARM, aprimora significativamente a precisão e a estabilidade. O novo algoritmo traz uma faixa de medição única que pode cobrir mais de 120 dB da faixa dinâmica.

O DEC-7000 é Classe 1.

1.1 Aplicações

- Medições de ruído básicos
- Avaliação de ruído ambiental
- Verificação de qualidade de produto
- Avaliação de engenharia para redução de ruído

2. Características

- Display LCD 160 x 160 retroiluminado com 14 níveis de contraste e taxa de atualização de exibição de 1s
- Faixa de medição: 22dB~136dB (A)
- Ponderação da frequência: A, B, C, Z.
- Ponderação do tempo: Rápido (F), Lento (S), Impulso (I)
- Resposta de frequência:
- 1/1 de oitava em tempo real: 8 Hz~16k Hz
- 1/3 de oitava em tempo real: 6,3 Hz~20k Hz (opcional)
- Medição do período integral definido pelo usuário para infinito ou 1s~24h
- Calcula SPL, LEQ, Max, Min, Pico, SD, SEL, entre outros
- Possui 3 perfis fixos de medição e 14 definidas pelo usuário
- Exibição da curva estatística do LN e do histórico do tempo
- Interface de comunicação com o PC/USB
- Armazenamento em massa em cartão MicroSD 4Gb
- Saída de sinal AC/DC
- Possui interface de entrada de disparo (TRIGGER)

- Mini impressora térmica para a impressão dos dados de medição (opcional)
- Microfone de medição pré polarizado de 1/2", classe 1 com sensibilidade de 40 mV/Pa.
- Idiomas de operação: Português, Inglês, Espanhol, Chinês, Alemão e Francês
- Alarme: Limite de alarme pode ser definido pelo usuário com um indicador LED
- Temperatura de Operação: -10 °C~50 °C
- Umidade de Operação: 20%~90% U.R.
- Alimentação: 4 Pilhas "AA" 1,5V Alcalinas ou adaptador AC/DC
- Peso: Aprox. 620 g, incluindo as 4 baterias alcalinas
- Dimensões: (C x L x A): 70 x 300 x 36
- Garantia: 12 meses

3. Especificações técnicas

Precisão	Classe 1
Norma aplicável	GB/T 3785.1-2010, IEC 60651:1979, IEC 60804:2000, IEC 61672-1:2013, ANSI S1.4-1983, ANSI S1.43-1997
Oitava ¹	1/1 de oitava em tempo real: 8 Hz~16k Hz GB/T 3241-2010, IEC 61260-1:2014 ANSI S1.11-2004. Sistema base 10
Microfone Fornecido	Microfone de medição pré polarizado de 1/2", Classe 1. Sensibilidade: 40 mV/Pa. Frequência Faixa: 3 Hz~20k Hz.
Interface do microfone	Conector TNC com fonte de alimentação ICCP (4 mA)
Detector/Filtro	Processamento de sinal digital com ponto flutuante (detector e filtro digital)
Período integral	Período integral definido pelo usuário para infinito ou 1 s~24 h. Repetição do tempo: Infinito ou 1~9999
Passo do registrador	0,1 s, 0,2 s, 0,5 s, 1 s∼24 h

Funções de medição	L _{XY(SPL)} , L _{Xeq} , L _{XYSD} , L _{XSEL} , L _{XE} , L _{XYmax} , L _{XYmin} , L _{XPeak} , L _{XYN} . Onde: X é a ponderação da frequência: A, B, C, Z; Y é a ponderação do tempo: F, S, I; N é o percentual estatístico: 1~99; 3 perfis e 14 medições definidas pelo usuário são calculados em paralelo com diferentes ponderações de frequência/tempo
Medição 24h	Medição automática baseada na data/hora definida pelo usuário e salvamento dos dados históricos
Ponderação de frequência	A, B, C, Z (isto também pode ser aplicado ao 1/1 e 1/3 de oitava)
Ponderação de tempo	F, S, I e detecção de pico
Emissão de ruido ²	Acústico: 19 dB (A), 25 dB (C), 31 dB (Z) Elétrico: 13 dB (A), 17 dB (C), 24 dB (Z)
Limite superior ²	136 dB (A) Aumento para 154 dB (A) com microfone 5 mV/Pa
Resposta de frequência ¹	10 Hz~20kHz
Faixa de medição	22 dB~136 dB (A)
Faixa ^{2,3,4}	Oitava: 30 dB~136 dB
Faixa dinâmica ²	123 dB (13 dB (A)~136 dB (A))
Faixa C do pico 2,3	47 dB~139 dB
Entrada elétrica	tensão máxima de entrada: 5 Vrms (7,07 V pico). Impedância de entrada do pré amplificador: >6 GΩ
Configuração da faixa	Faixa única para cobrir toda a faixa dinâmica
Resolução	24 bits
Taxa de amostragem	48 kHz (Intervalo de amostragem para LN: 20 ms)
Histórico do tempo	Exibição da curva de ruído do domínio do tempo. Tempo de duração: 1 min./2 min./10 min./
LCD	LCD 160 x 160 com iluminação branca, 14 níveis de contraste, taxa de atualização da exibição de 1s.

Armazenamento	Cartão MicroSD (cartão TF)
Pós processamento	O software de pós-processamento VA-SLM pode ler, analisar e gerar relatórios dos dados armazenados.
Exportação de dados	Conecta diretamente ao computador para ler o cartão de memória (disco USB)
Saída	Saída AC (máx. 5 V _{RMS} , ±15 mA), Saída DC (10 mV/dB, máx. 15 mA), interface serial RS-232 e USB (modo de disco USB ou modo modem)
Alarme	Limite de alarme definido pelo usuário. LED indica o status do alarme
Modelo de configuração	5 modelos para salvar configurações do usuário para aplicações diferentes, os modelos podem ser salvos no cartão MicroSD
Alimentação automática	Alimentação e início da medição automática quando a fonte de alimentação estiver disponível, facilidade de integração
Fonte de alimentação	4 baterias alcalinas de 1,5 V (LR6/AA/AM3), uso sustentável de aproximadamente 10 horas (dependendo da bateria). Ele também pode ser alimentado por energia DC externa (7 V~14 V 500 mA) e energia da USB (5 V 1 A)
RTC	Erro <26 s em 30 dias (<10 ppm, (25±16) °C). A bateria interna pode manter o RTC funcionando ao substituir as baterias principais. Função de temporização GPS disponível (opção com o módulo GPS)
idioma	Inglês, Chinês, Português, Espanhol, Alemão, Francês
Atualização do firmware	Atualização do firmware através da porta USB
condições	Temperatura: -10 °C~50 °C. Umidade: 20%~90% UR
Dimensão	70x300x36
Peso	Aproximadamente 620g

Nota 1: Ignore os resultados fora da faixa 20 Hz~12,5 kHz para o modelo DEC-6000 devido à resposta de frequência do microfone da Classe 1. **Nota 2:** Os dados foram medidos com microfone 40mV/Pa para o DEC-6000.

Nota 3: Medição de acordo com a GB/T 3785 e IEC 61672.

Nota 4: Medição de acordo com a GB/T 3241 e IEC 61260.

3.1 Informações para Testes Periódicos

- Nível sonoro de referência: 94,0 dB.
- Direção de incidência de referência: Paralela à direção de incidência do microfone.
- Ponto de referência do microfone: O ponto central do diafragma do microfone.
- Direção de incidência de referência: Direção perpendicular ao diafragma do microfone.
- Atenuação de referência do espectro de oitava: 0dB.
- Nível do sinal de entrada de referência do espectro de oitava: 40mV (94dB para sensibilidade de 40mV/Pa)

5.1 Ligar/Desligar

Pressione a tecla <**Ligar/Desligar>** por 2 segundos para ligar o medidor de nível sonoro. Quando o medidor de nível sonoro estiver no estado parado, pressione por 2 segundos para abrir a caixa de diálogo de desligamento e então pressione <**Enter>** para desligar o medidor de nível sonoro.

Nota: A tecla **<Enter>** é inválida quando o medidor de nível sonoro está executando medições.

5.2 Esc/Voltar

Sai do menu ou retorna para o menu anterior. Apaga a curva histórica na tela do histórico do tempo. Retorna apagando dados quando em pausa da medição.

5.3 Enter

Entra no menu do próximo nível, confirma as alterações de parâmetros ou salva os dados atuais no formato CSD no estado parado.

5.4 Iniciar/Parar

Inicia ou finaliza uma medição

5.5 Tecla <▲>

A seta para cima é usada para selecionar o item do menu ou ajustar os parâmetros.

5.6 Tecla <▼>

A seta para baixo é usada para selecionar o item do menu ou ajustar os parâmetros.

5.7 Tecla <◀>

A seta para a esquerda é usada para selecionar o item do menu, ajustar os parâmetros ou mudar telas de medição.

5.8 Tecla <►>

A seta para a direita é usada para selecionar o item do menu, ajustar os parâmetros ou mudar telas de medição.

5.9 Menu/Pausa

Pressione para entrar na lista do menu principal. Faz uma pausa ao executar uma medição.

6. Conector do microfone

O conector TNC na parte superior do medidor de nível sonoro é usado para conectar o microfone e o pré amplificador (normalmente o microfone e o pré-amplificador são montados juntos). O TNC é um conector coaxial rosqueado.

O **DEC-7000**é equipado com um microfone classe 1: Microfone de medição pré polarizado de 1/2", classe 1 Sensibilidade: 40 mV/Pa. Faixa de frequência 3 Hz~20 kHz.

Montado com pré amplificador ICCP e alimentado por 4 mA/24 V. O microfone e o pré-amplificador são montados juntos pela rosca. A não ser em situações especiais, não separe um do outro. O microfone é um sensor de medição de precisão, a exposição à umidade alta ou ambiente com poeira por um longo tempo pode afetar o microfone.

O microfone que não estiver em uso deverá ser armazenado na caixa.

O microfone é alimentado pelo ICCP. As especificações atuais de energia são 4 mA, voltagem de 24 V. Se a voltagem do microfone for superior a 30 V ele será danificado. O medidor de nível sonoro **DEC-7000**possui uma fonte interna ICCP que pode conectar-se diretamente ao microfone.

Insira o microfone no conector TNC. Então gire a rosca até que a conexão esteja firme

6.1 Proteção contra o vento

O medidor de nível sonoro é equipado com a proteção contra o vento para ambientes externos ventosos. Não precisa usar a proteção contra o vento quando usado em ambientes sem vento (tais como medições internas).

Insira a proteção contra o vento no microfone até o fim de acordo com o diagrama acima.

6.2. Correções da influência do protetor de vento

Quando utilizado o protetor de vento no microfone do sonômetro, recomenda-se executar a correção da influência dos efeitos do protetor de vento na resposta em frequência do microfone, conforme tabela abaixo:

Freq. (Hz)	Correção protetor de vento (dB)
1k	0
1,25k	0
1,6k	-0,1
2k	-0,1
2,5k	-0,2
3,15k	-0,2
4k	0
5k	0
6k	0
8k	0,1
12,5k	0,6

7. Conector de dados e de alimentação de energia

Existem 7 interfaces na parte inferior do medidor de nível sonoro. Abra a tampa de borracha para ter acesso a estas interfaces.

7.1 PWR:

Conector de energia, usando a tomada de CC padrão (2,1 mm de diâmetro do núcleo), é possível conectar a fonte de alimentação externa de 7~14 V 500 mA.

Nota: Exceder os 14 V pode danificar o medidor de nível sonoro.

7.2 MiniUSB:

A porta Mini USB se conecta a um computador e pode ser selecionada como **Modo DiscoUSB** ou **Modo Modem**. Além disso, a porta MiniUSB pode ser usada como outra fonte de energia externa, mas a fonte de alimentação deve atender aos requisitos de 5 V/1 A..

Modo DiscoUSB os arquivos dentro do cartão MicroSD podem, neste modo, ser acessados diretamente, não havendo necessidade de instalar um driver. O computador pode reconhecer a porta Mini USB como porta serial (porta serial virtual, necessita instalar um driver) e comunicar-se com o medidor de nível sonoro através do protocolo RS-232. **Nota:** Pelo menos a capacidade de corrente de energia de 1 A deve ser atendida para a fonte e o cabo de alimentação. Selecione o modo de trabalho após conectar ao computador. De outro modo, o computador não poderá reconhecer a porta USB. As portas Mini USB e RS-232 não podem funcionar ao mesmo tempo

7.3 MicroSD:

Na tomada MicroSD, o cartão MicroSD padrão pode ser usado para armazenar arquivos SWN, OCT e CSD. É recomendado usar a leitora de cartões para formatar o cartão MicroSD, ao invés de formatá-lo no **Modo Disco USB**.

Note que o cartão MicroSD fornecido com o medidor de nível sonoro já está formatado antes da venda.

Nota: Mantenha o lado da frente (com serigrafia) do cartão MicroSD para baixo ao inserí-lo.

7.4 RS-232:

Ela pode ser usada como porta RS-232 padrão no modo **Remoto** e também pode ser usada para conectar a impressora térmica como modo **Impressora**.

7.5 TRIGGER:

Interface de entrada de disparo usando uma tomada de fone de ouvido de 3,5 mm padrão.

7.6 DC OUT:

Interface de saída de CC usando uma tomada de fone de ouvido de 3,5 mm padrão.

7.7 AC OUT:

Interface de saída de CA usando uma tomada de fone de ouvido de 3,5 mm padrão.

8. Compartimento da Bateria

É recomendado usar 4 células de baterias alcalinas (LR6/AA/AM3), prestando atenção à polaridade das baterias (+/-) marcada no compartimento das mesmas. Não misture baterias novas com usadas ao mesmo tempo. Remova as baterias quando o dispositivo não estiver em uso. A voltagem total das quatro células de baterias não podem exceder 14 V, caso contrário danificará o medidor de nível sonoro.

O teste real mostra que 4 células de baterias alcalinas podem suportar o uso de aproximadamente 10 horas (dependendo da bateria) para o medidor de nível sonoro. Ao usar baterias recarregáveis de boa procedência(Capacidade nominal de 2.450 mAh), o medidor de nível sonoro poderá trabalhar continuamente por cerca de 12 horas. Quando a voltagem da bateria é menor que a voltagem mínima requerida pelo medidor de nível sonoro, ele desligará automaticamente.

Recomendamos usar uma fonte de alimentação externa ou a alimentação de energia da USB ao invés de baterias para medições por um longo tempo.

Siga as informações na figura abaixo para instalar ou substituir as baterias:

Gire o botão para o lado esquerdo para destravar a tampa do compartimento das baterias. Então levante a tampa para abrí-la.

Feche e trave a tampa após trocar as baterias.

9. GPS

A antena do GPS está localizada na superfície superior do medidor de nível sonoro, este que é parte de um equipamento personalizado.

Nota: O desempenho do GPS é afetado principalmente por dois fatores: a posição do satélite e a taxa de ruído no sinal do satélite. O GPS poderá perder o sinal em locais fechados, é recomendável o uso em locais abertos.

O GPS possui 3 modos de partidas: partida fria, partida morna e partida quente:

- **Partida fria:** A primeira localização, precisa ser baixada e leva um tempo mais longo.
- Partida morna: O módulo GPS possui a última informação de localização salva, mas precisa baixar novamente porque ela expirou. A partida morna precisa praticamente do mesmo tempo da partida fria.
- **Partida quente:** O módulo GPS possui uma localização válida e pode reposicionar em um tempo muito curto.

10. Tela de medição

O medidor de nível sonoro possui três modos de medição: Medidor de nível, 1/1 de oitava, 1/3 de oitava. O usuário pode selecioná-los no menu de Funções.

O Medidor de nível possui 8 telas que podem ser trocadas através das teclas < \triangleleft > e < \triangleright >.

As 8 telas são: Principal, 3 Perfis, Estatística de LN, Histórico do tempo, Página 1 da medição personalizada, Página 2 da medição personalizada, Página 1 do GPS e Página 2 do GPS.

O 1/1 de oitava possui 6 telas: Histograma da oitava, Páginas de 1 a 3 da tabela de oitava, Página 1 do GPS e Página 2 do GPS.

O 1/1 de oitava possui 7 telas: Histograma da oitava, Páginas de 1 a 4 da tabela de oitava, Página 1 do GPS e Página 2 do GPS.

10.1 Descrição do display LCD

Todos os ícones e telas principais quando habilitadas, e os significados de cada ícone são descritos à seguir:

e u e e	Início, Parada, Pausa, Pausa (voltar apagando disponível). Descreve o estado da medição
	Indicador de sobrecarga e indicador de subfaixa. Setas sólidas indicam que o estado atual está em sobrecarga/abaixo da faixa. Setas vazias indicam que ocorreu um evento de sobrecarga/abaixo da faixa no decorrer do período integral. No início do novo período integral, o indicador de sobrecarga/abaixo da faixa estará apagado.
(NSP)	Estado da energia do ICCP. Exibido quando o ICCP está desligado
TRG	Estado do disparo. Exibido quando o disparo está habilitado.
232 PRT	Estado da RS-232. O ícone 232 será exibido no modo Remoto e o ícone mi será exibido no modo Ímpressora.
31 300	Estado do temporizador. O ícone Isi significa que o temporizador está habilitado e executado somente uma vez. O ícone Isi significa que o temporizador está habilitado e executado em loop.
SD	Estado do MicroSD. Exibido quando o armazenamento no MicroSD está habilitado.
-)-	Estado da energia. Os ícones da esquerda para a direita: fonte de alimentação externa, energia da bateria (com exibição da voltagem e fonte de energia da USB.
SPLIPER LEO Max Min	Modo de cálculo da medição.
ABCZ	Ponderação em frequência
esu	Ponderação temporal
Profile1	Ícone do perfil. Indica o número do perfil atual
114.0 dB	Valor da medição
78 154	Visualização e gráfico de barra dinâmicos dos valores medidos dentro da faixa atual.
2010-12-14 17:49:56	Data e hora.
0001.SWN	O nome do arquivo atual de armazenamento.
(5) 05:00:00 (2) 00:01:32	O Ícone 🖲 significa o período integral, o ícone 📓 significa o tempo transcorrido. A medição para quando o tempo transcorrido é igual a tempo de medição total (Período integral * Repetição).

Os ícones na mesma linha serão exibidos ao mesmo tempo. Todos os ícones podem ser exibidos em cada tela e mantém o mesmo significado.

10.2 Tela de modo de medição de nível

Tela principal. Exibe os dados medidos, filtro, detector, modo e número do perfil. A tela principal exibe somente um grupo de dados dos 3 perfis. Pressione $< \blacktriangle >$, $< \Psi >$ para mudar entre os 3 perfis

3 perfis. Exibe os dados e o modo correspondente, as ponderações dos 3 perfis ao mesmo tempo. Os dados dos 3 perfis podem ser salvos no arquivo SWN.

Estatística de LN. Exibe 10 grupos de resultados estatísticos. Cada grupo de fontes de dados (modo fixo para SPL, filtro e detector podem ser personalizados) e o valor da percentagem pode ser configurado através do menu.

Histórico do tempo. Exibe o valor do ruído atual e a curva de domínio do tempo. As fontes de dados (um dos 3 perfis) e a cronologia (1 min, 2 min e 10 min) podem ser personalizadas.

Pressione **<ESC>** para limpar a tela e exibir a curva novamente.

		232	SD) 📼
LA	.eq =	56.4	вdВ
L1	0 =	66.2	dB
L5	0 =	54.6	i dB
L9	0 =	35.1	dB
LA	Fmax=	87.9	dB
	Fmin =	32.7	dB
	⊦sd =	8.6	0 dB
2010-12	2-14 5 56 2	of8 (0.1℃ ;	9 05:00:00 2 00:01:32
▣		232	ISD) 📼
LA	F =	53.8	dB 🛛
LB	F =	54.2	dB
	F =	54.0	1 dB
	r =	05.4	I GB
	581 = o -	7 1.0	
	neak –	82 4	dB
2010.10	pear -	02.U	D 05-00-00
17:49	56 <u>2</u>	018 0 0.1°C :	S 05:00:00 Z 00:01:32
		232	ISD) 📖
₽ GF	'S Stat	<u>(232)</u> :e:Loca	ted
GF Date	PS Stat	_ <u> 232 </u> :e:Loca !=12=14	190 (
GF Date	S Stat 2010	_ <u> 232 </u>)e:Loca)=12=14 9:56	(<u>so</u>) () ted 4
GF Date UTC Lat	PS Stat 2010 17:4 39°8	<u>[232]</u>)e:Loca)=12=14 9:56 0'42.0	<u>so</u> ted 4 0"N
GF Date UTC Lat Lon	S Stat 2010 17:4 39°8 116°	_ <u>1232</u>)e:Loca)⊢12−14 9:56 0'42.0 30'33.	ted 4 0" N 00"E
GF Date UTC Lat Lon Alt	PS Stat 22010 217:4 239°8 2116° 251.3	<u> 232</u>)⊖:Loca)⊖:56 0'42.0 30'33.	100 (1000) 14 00" N 00"E
GF Date UTC Lat Lon Alt SOG	PS Stat 22010 17:4 39°8 116° 51.3	<u>232</u>)=:Loca)=12-14 9:56 0'42.0 30'33. 3 M km/h	100 (100) 14 0" N 00"E
GF Date UTC Lat Lon Alt SOG 2010-12	S Stat 2010 17:4 39°8 116° 51.3 51.3	<u> 232</u>)e:Loca -12-14 9:56 0'42.0 30'33. 3 M km/h	ted 4 0" N 00"E
GF Date UTC Lat Lon Alt SOG 2010-12 17:49:	PS Stat 2010 17:4 39°8 116° 51.3 0.6 14 72	<u> 232</u> ≔Loca 9:56 0'42.0 30'33. 3 M km/h <u>ô.1tê §</u>	<u>sD</u> ted 4 0" N 00"E 20001:32
GF Date UTC Lat Lon Alt SOG 2010-12 17:49:	PS Stat 2010 17:4 39°8 116° 51.3 51.3	2322 e:Loca ⊢12-14 9:56 0'42.0 30'33. 3 M km/h <u>01€</u>	(10) (10) (10) (10) (10) (10) (10) (10)
GF Date UTC Lat Lon Alt SOG 2010-12 17:49:3	PS Stat 2010 17:4 39°8 116° 51.3 0.6 4 2	2322 e:Loca ⊢12-14 9:56 0'42.0 30'33. 3 M km/h <u>ô1tê</u> 232	Image: second
GF Date UTC Lat Lon Alt SOG 2010-12 17:49:3	PS Stat : 2010 : 17:4 : 39°8 : 116° : 51.3 : 0.6 : 4 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2	2322 e:Loca -12-14 9:56 0'42.0 30'33.3 M km/h 01℃ 232 232 232 232	SD Image: Constraint of the second seco
GF Date UTC Lat Lon Alt SOG 2010-12 17:49:	PS Stat 2010 17:4 39°8 116° 51.3 0.6 14 2 Satellit 7:12	2322 e:Loca ⊢12−14 9:56 0'42.0 30'33. } M km/h 01€ 232 es:04 08:	Image: Second state Image: Second state 18 1
GF Date UTC Lat Lon Alt SOG 2010-12 17:49: 17:49: 0'	PS Stat 2010 17:4 39°8 116° 51.3 0.6 4 51.3 20.6 34 2 5 5 5 5 5 5 5 5 5 5 5 5 5	2322 e:Loca ⊢12-14 9:56 0'42.0 30'33. } M km/h <u>01°</u> 232 232 232 232 232 232 232 232 233 23 2	(SD) (1 1 1 1 1 1 1 1 1 1 1 1 1
GF Date UTC Lat Lon Alt SOG 2010-12 17:49: 0 0 0 1 0 0 0 1	PS Stat ⇒ 2010 ⇒ 17:4 ⇒ 39°8 ⇒ 116° ⇒ 51.3 ⇒ 0.6 ⇒ 1.3 ⇒ 0.6 ⇒ 1.3 ⇒ 1.3 ⇒ 1.3 Satellit 7:12 9:18 9:33 2:25	2322 e:Loca ⊢12-14 9:56 0'42.0 30'33. } M km/h 01€ 232 232 232 232 232 232 232 23	(SD) (ted 4 0" N 00"E 0000132 (SD) (18 20
GF Date UTC Lat Lon Alt SOG 2010-12 17:49: 0' 0' 1' 2'	PS Stat 2010 17:4 39°8 116° 51.3 0.6 4 51.3 20.6 54 20 53 20 53 20 53 20 53 20 53 20 53 20 53 20 53 20 50 50 50 50 50 50 50 50 50 5	2322 e:Loca ⊢12-14 9:56 0'42.0 30'33. M km/h 01℃ 232 232 232 08: 08: 21: 21: 21: 21: 21: 21: 21: 21	Image: second
GF Date UTC Lat Lon Alt SOG 2010-12 17:49:3 0' 0' 1' 2: 1' 2: 1' 2: 1'	PS Stat 2010 17:4 39°8 116° 51.3 0.6 34 <u>2</u> Satellit 7:12 9:33 3:25 	2322 e:Loca () 12-14 9:56 0'42.0 30'33. M km/h 01℃ 232 232 es:04 08: 232 08: 232 16: 21: 27: :	Image: second
GF Date UTC Lat Lon Alt SOG 2010-12 17:49: 0' 0' 1' 2: 	PS Stat 2010 17:4 39°8 116° 51.3 0.6 4 2 54 2 5 5 5 5 5 5 5 5 5 5 5 5 5	232 e:Loca -12-14 9:56 0'42.0 30'33. M km/h 01 ² 232 232 232 232 232 16: 21: 21: 27: : :	Image: second

Página 1 da medição personalizada. O usuário pode configurar os parâmetros dos 14 grupos de medições. Esta tela pode exibir os 7 primeiros grupos

Página 2 da medição personalizada. O usuário pode configurar os parâmetros dos 14 grupos de medições. Esta tela pode exibir os 7 últimos grupos.

Página 1 do GPS. Exibe as informações do GPS. Estado do GPS, data do GPS, hora do GPS, latitude, longitude, altitude e velocidade.

Página 2 do GPS. Exibe o número do satélite que contribui para o posicionamento, a taxa de ruído do sinal e de todos os satélites visíveis (0 dB~99 dB).

Nota: O número de satélites visíveis pode ser maior que o número de satélites de posicionamento devido a que alguns satélites estão indisponíveis para o posicionamento.

10.3 Tela do modo de banda de oitava

Espectro de 1/1 de oitava. Exibe 12 bandas de 8 Hz~16 kHz e LAeq, LBeq, LCeq, LZeq como um gráfico de barras. Pressione <▲>, <▼> para exibir os valores detalhados de cada banda. Pode ser definido um limite para cada banda. O indicador LED acenderá em vermelho quando os dados excederem o limite

Página 1 da tabela de oitava. Exibe os dados medidos de 8 Hz~16 kHz. O indicador LED acenderá em vermelho e o valor em dB será exibido com cor invertida quando os dados excederem o limite.

Página 2 da tabela de oitava. Exibe os dados medidos de LAeq、LBeq、LCeq、LZeq. O indicador LED acenderá em vermelho e será exibido quando os dados excederem o limite.

10.4 Tela do modo de 1/3 de oitava

Espectro de 1/3 de oitava. Exibe 36 bandas de 6,3Hz~20kHz e LAeq, LBeq, LCeq, LZeq como um gráfico de barras. Pressione <▲>, <▼> para exibir os valores detalhados de cada banda. Pode ser definido um limite para cada banda. O indicador LED acenderá em vermelho quando os dados excederem o limite.

Página 1 da tabela de oitava. Exibe os dados medidos de 6,3Hz~80Hz. O indicador LED acenderá em vermelho e o valor em dB será exibido com cor invertida quando os dados excederem o limite

Página 2 da tabela de oitava. Exibe os dados medidos de 100 Hz~1,25 kHz. O indicador LED acenderá em vermelho e o valor em dB será exibido com cor invertida quando os dados excederem o limite.

		232	SD (
Hz	dBZ	Hz	dB	Ζ
1.6k	78.4	2k	78	.4
2.5k	78.4	3.15	5k 45	.6
4k	64.2	5k	43	.1
6.3k	38.6	8k	23	.8
10k	42.5	12.5	5k 18	.9
16k	69.1	20k	11	.5
2010-12 17:49:5	-14 4 56 21	of7 0.1℃	© 05:0 Σ 00:0	0:00 1:32
		232	SD) (
▶ Lei	a di	232 3 L	⊡im.	
Lei Legi	q di A 48	232 3 L .6 8	SD(_im. 30.0	
Lei Legi Legi	q di A 48 B 50	232 3 L .6 8 .1 8	SD (_im. 30.0 30.0	
Lei Legi Legi Legi	q di A 48 B 50 C 68	232 3 L .6 8 .1 8	SD (_im. 30.0 30.0 30.0	
Leq Leq Leq Leq Leq	q di A 48 B 50 C 68 Z 81	232 3 L .6 8 .1 8 .4 8	SD 0 _im. 30.0 30.0 30.0 30.0	₹
Leq Leq Leq Leq Leq	q dl A 48 B 50 C 68 Z 81	232 3 L .6 8 .1 8 .4 8	SD 0 _im. 30.0 30.0 30.0 30.0	•

Página 3 da tabela de oitava. Exibe os dados medidos de 1,6kHz~20kHz. O indicador LED acenderá em vermelho e o valor em dB será exibido com cor invertida quando os dados excederem o limite.

Página 4 da tabela de oitava. Exibe os dados medidos de LAeq, LBeq, LCeq, LZeq. O indicador LED acenderá em vermelho e o valor será exibido quando os dados excederem o limite.

11. Operação e configuração do menu

Pressione **<Menu>** para acessar o próximo nível do menu. Todos os parâmetros relacionados à medição podem ser configurados no menu.

11.2 Função

Selecione **Function** e pressione **<Enter>** para entrar neste menu. 3 tipos de medição podem ser selecionados: **Medidor de nível**, **banda de oitava** e **1/3 de oitava**. Pressione **<▲>**, **<▼>** para selecionar o modo de medição. Pressione **<Enter>** para salvar a configuração e e retornar para o menu anterior. Pressione **<ESC>** para retornar ao menu anterior.

11.3 Calibração

Calibration

By Measurement Bu Cal.Factor Selecione **Calibration** e pressione **<Enter>** para entrar neste menu. Muitos fatores, que incluem temperatura, umidade e pressão do ar poderão influir na sensibilidade do microfone. Então, o usuário deve executar uma calibração pelo menos uma vez antes da medição. Existem dois métodos de calibração: Por **medição** fator de calibração. O método por **medição** é recomendado para calibração com o calibrador acústico. O método de fator de calibração pode ser ajustado manualmente através do fator de calibração pelo usuário.

11.3.1 Calibração por medição

Selecione **ByMeasurement** e pressione <**Enter**> para entrar neste menu. O nível de calibração pode ser ajustado entre 0 dB~199,9 dB. Pressione <**4**>, **>** e <**▲**>, **<▼**> para alterar o valor do nível de calibração e pressione **<Start>** para iniciar a calibração. Após a calibração ser concluída, o novo fator de calibração ser concluída, o novo fator de calibração resultante será atualizado e o usuário poderá pressionar **<Enter>** ou **<ESC>** para salvar ou ignorar este resultado. Este menu também exibe o histórico da calibração. Finalizando com o símbolo **M** indica que o registro foi calibrado pelo método por **medição**

11.3.2 Calibração por fator de calibração

By Cal.Fac	tor
Cal.Facto	or:
+007.90d	В
Cal.Histo	ry
2015-05-11:-	6.10F
2015-05-11:-	6.00M
2015-05-11:-	6.00M
2015-05-11:-	6.00M

Selecione **ByCal.Factor** e pressione <**Enter**> para entrar neste menu. Os usuários podem ajustar o fator de calibração manualmente. Pressione <**4**> ou **<**▶> para selecionar o dígito do fator, pressione **<▲**>, **<▼**> para ajustar o valor e pressione **<Enter**> para salvar ou pressione **<ESC**> para retornar ao menu anterior. Finalizando com o símbolo **F** indica que o registro foi calibrado pelo método de **fator de calibração**.

Conversão do fator de calibração e sensibilidade

A sensibilidade pode ser calculada pelas fórmulas seguintes e o fator de calibração também pode ser calculado pela sensibilidade e pelo tipo diretamente no medidor de nível sonoro.

> Cal.F = 20 * log (Sens / 40) + offset Sens = 40 * 10((Cal.F-offset) / 20) Onde:

Cal.F é o fator de calibração, expresso em decibels (dB); **Sens** é a sensibilidade do microfone, expresso em mV/Pa;

offset é o fator de calibração, expresso em decibels (dB); Este valor é o resultado da calibração pelo método de **medição** com sinal de 40 mV. Esta compensação é o desvio inerente, o qual é diferente para cada medidor de nível sonoro.

Processo de calibração pela mediçãoA calibração pela medição é o método recomendado para calibração com o calibrador sonoro. O processo de calibração pela medição é mostrado a seguir:

1- Insira o microfone na cavidade do calibrador até que ele encaixe sem estar frouxo

2- Então ligue a energia do calibrador e configure para um nível de pressão sonora constante (por exemplo 94 dB).

3- Selecione **Calibration** no menu e então pressione **<Enter>** para entrar em **ByMeasurement**.

Menu	Calibration
Function	By Measurement
Measurement Setup Language Output Factory Settings	

4- Ajuste **Cal.Level** no menu, por exemplo, para 93,8 dB. Existe um retardo de 5 s após pressionar **<Start>** para executar a calibração.

5- Após o final da calibração, o medidor de nível sonoro atualizará o fator de calibração. Pressione <**Enter**> para aplicar os resultados.

6- Retorne a **Tela principal** e pressione <**Start/Stop**> para iniciar a medição. O resultado da medição atual será de 93,8 dB neste exemplo.

11.4 Medição

Existem 13 itens no menu Measurement. Pressione <▲ > ou <▼ > para escolher e selecionar, pressione <Enter> para acessar o próximo nível do menu.

11.4.1 Configuração do MEA S.

PIEH3.30	cup	
Delay	.	1 5
Itg.Period	5	Inf
Repeat	5	Inf
SWN Logger	5	[*]
SWN Log.Ste	p:	1 s
CSD Logger	1	[*]
CSD Log.Ste	ep :	1m

O menu **MEAS.Setup** é o mais importante menu relacionado a medição. Ele pode configurar os parâmetros de **Retardo**, **Período integral**, **Repetição**, **Registrador SWN**, **Passo do registrador SWN**, **Registrador CSD** e **Passo do registrador CSD**. Pressione <▲ > ou <▼ > para escolher e selecionar.

Retardo:

Tempo de retardo entre pressionar <**Start**> e o início da medição. Pressione <◀> ou <▶> para selecionar o tempo de retardo: Sync 1 m, Sync 15 m, Sync 30 m, Sync 1 h, 1 s~60 s. O tempo de retardo pode suprimir o ruído ao pressionar a tecla antes da medição.

Período integral:

Itg.Period é o período integral de cada medição individual. No início de cada período integral, todos os dados integrais e dados de retenção de tempo serão restaurados, e os indicadores de sobrecarga e abaixo da faixa serão apagados. Os dados integrais e de retenção de tempo incluem LEQ, Max, Min, Peak, SD, SEL, E e LN. Pressione <◀> ou <►> para selecionar a opção: Inf, 1 s~59 s, 1 m~59 m, 1 h~24 h.

Repetição:

Repeat é o número de tempo de repetição da medição. Período de medição total = **Período integral** x **Repetição**. Pressione < ◀> ou < ►> para selecionar a opção: Inf, 1~9999.

Registrador SWN:

Pressione <◀> ou <▶> para mudar. Se estiver selecionado, o medidor de nível sonoro salvará os arquivos SWN/OCT. Os arquivos SWN/OCT salvam os dados históricos de tempo no arquivo. A fonte de dados no modo **Medição de nível** é o Perfil 1~3 (selecionado em **SWN Save** do menu do Perfil 1~3) armazenado como um arquivo SWN; no modo de banda de oitava são salvas todas as bandas de oitava e LAeq, LBeq, LCeq, LZeq, armazenados como arquivos OCT.

Passo do registrador SWN:

SWN Log.Step é o passo do registrador (intervalo de tempo) para salvar dados como arquivo SWN/OCT. Pressione < 4 > ou < > para selecionar a opção: 0,1 s, 0,2 s, 0,5 s, 1 s~59 s, 1 m~59 m, 1 h~24 h. **Nota:** O Passo do registrador SWN de 1/3 de oitava inicia em 0,5 s (0,1 s e 0,2 s são desabilitados).

Registrador CSD:

Pressione <◀> ou <▶> para mudar. Se estiver selecionado, o medidor de nível sonoro salvará os arquivos CSD. O arquivo CSD salva os dados instantâneos no arquivo. A fonte de dados no modo medição de nível é o resultado de medições personalizadas de 14 grupos armazenados como um arquivo CSD; no modo de banda de oitava são salvas todas as bandas de oitava e LAeq, LBeq, LCeq, LZeq, armazenados como arquivos CSD.

Nota: Se estiver selecionado, pressione **<Enter>** na tela principal para salvar manualmente os dados no arquivo CSD quando a medição for paralisada.

Passo do registrador CSD:

CSD Log.Step é o passo do registrador (intervalo de tempo) para salvar dados como arquivo CSD. Pressione <◀> ou <▶> para selecionar a opção: 1 s~59 s, 1 m~59 m, 1 h~24 h.

Nota: Arquivos SWN/OCT armazenam somente dados integrais. O passo do registrador pode ser considerado como o período integral. Todos os dados dentro do passo do registrador (período integral) serão armazenados como uma linha no arquivo SWN/OCT. Arquivos CSD armazenam somente dados instantâneos sem integração. Assim que o passo do registrador CSD é alcançado, 14 grupos de dados de medições personalizadas serão armazenados como uma linha no arquivo CSD, exatamente como uma captura de tela.

Pausa na medição e retorno

A medição em execução pode ser pausada temporariamente pressionando a tecla **<Menu/Pause**>. Quando a medição é pausada, o medidor de nível sonoro paralisa a integração dos dados, mas os dados instantâneos tais como SPL continuarão sendo atualizados e exibidos. Pressionando a tecla **<Menu/Pause**> novamente restaurará a medição e os dados integrais continuarão a ser integrados.

Eventos acústicos durante o período de tempo em que o medidor de nível sonoro estiver em pausa não afetarão os dados integrais totais.

Note que quando a medição está em pausa, o tempo transcorrido não ficará em pausa, então a suspensão não afetará o período de integração. O armazenamento de arquivos SWN/OCT não é afetado pela função pausa e ele continuará a armazenar dados de acordo com o **Passo do registrador SWN** durante a suspensão. A coluna **Pause** do arquivo CSD mostrará se o período de tempo atual está em pausa ou não, **P**: pausado, **N**: não pausado. Quando a medição está em pausa, um retorno com apagamento pode ser executado para restaurar os dados integrais para 5 segundos atrás. Nos dois casos seguintes, a função de retorno com apagamento é inválida:

1-Registrador CSD habilitado.

2-Antes da operação de pausa ser executada, se o tempo de execução tiver sido menor que 5 segundos, então nenhum dado poderá ser apagado.
3-Nos modos de 1/1 de oitava ou 1/3 de oitava quando o Detector está Rápido ou Lento.

Quando a medição está em pausa, o ícone do estado da medição mostrará se o retorno com apagamento está disponível ou não:

Retorno com apagamento é invalido

O retorno com apagamento é válido, então pressione a tecla <**ESC/Back Erase**> e todos os dados integrais serão restaurados para o estado antes de 5 segundos.

11.4.2 Faixa de MEA S.

Linearity Rang 20.0dBA - 134.0	
20.0dBA - 134.0	e:
	IdBA
Dynamic Range	
11.0dBA - 134.0	IdBA
Peak C Range:	
45.0dBA - 137.0	dBA

O menu **MEAS.Range** exibe a Faixa de linearidade, Faixa dinâmica e Faixa C do pico. O algoritmo novo desenvolvido traz uma faixa de medição única que não precisa mais mudar a mesma. O algoritmo pode atender os requisitos de resposta do toneburst abaixo de 0,25 ms com somente 0,1 dB de erro a 4 kHz. Além disso o erro é de 0,4 dB para teste de toneburst de 0,125 ms a 4 kHz. **Faixa de linearidade:** O resultado medido pode ser considerado como correto somente quando o resultado estiver localizado na faixa de linearidade. Por outro lado, o erro no resultado da medição estiver acima dos limites de aceitação. As vezes a faixa de linearidade também pode ser chamada de faixa de medição.

Faixa dinâmica: A faixa dinâmica é a faixa entre o nível de ruído auto gerado e o nível do sinal de entrada máximo. A faixa dinâmica é a faixa máxima que pode ser exibida no medidor de nível sonoro. Note que o resultado medido próximo ao nível de ruído auto gerado pode ser considerado não linear.

Faixa C do pico: A faixa C do pico é a faixa de linearidade da medição C do pico. O resultado da medição C do pico localizado nesta faixa pode ser considerado como correto.

11.4.3 Energia do ICCP

O menu de alimentação do ICCP controla a fonte de corrente constante de 4 mA/24 V a qual pode alimentar todos os tipos de sensores ICCP. Desabilite a energia do ICCP antes de conectar a outro tipo de sensor ou conectar diretamente à fonte de sinal. Pressione <◀> ou <▶> para escolher e selecionar:

11.4.4 Perfil 1~3

Profi	.1e	1
Filter Detector Mode SWN Save		A Fast SPL LEQ

O menu **Profile 1~3** pode configurar **Filtro**, **Detector**, **Modo** e **Salvamento de SWN**. Pressione $< \blacktriangle >$ ou $< \blacktriangledown >$ para escolher e selecionar.

Filtro:

Configura o filtro do Perfil 1~3. Pressione < 4 > ou < > > para selecionar a opção: **A**, **B**, **C** e **Z** (ponderação Z significa nenhuma ponderação e pode ser chamada de plana ou linear).

Detector:

Configura o detector do Perfil 1~3. Pressione <◀> ou <▶> para selecionar a opção: **Fast**, **Slow**e **Imp**.:

Configura o modo integral do Perfil 1~3. Pressione <◀> ou <▶> para selecionar a opção: SPL, PEAK, LEQ, MAX e MIN.

Salvamento de SWM:

Esta opção é usada para configurar quais dados deverão ser salvos no arquivo SWN, uma vez que a fonte de dados do arquivo SWN é o Perfil 1~3. Então esta opção não tem relação com a exibição na tela. Pressione <◀> ou <▶> para selecionar a opção: LEQ, PEAK, MAX ou MIN.

11.4.5 Limite de Alarme

Se o resultado da medição do Perfil 1~3 exceder o Limite de **alarme**, o indicador LED acima de **Power**> acenderá em vermelho. O limite de alarme pode ser configurado para 20 dB~200 dB Pressione $< \blacktriangle >$ ou $< \Psi >$ para aumentar ou reduzir em 1 dB. Pressione $< \varPhi >$ ou $< \blacktriangleright >$ para adicionar ou reduzir 10 dB.

11.4.6 Função estendida

Extended Function [*]Main [*]3 Profile [*]Statistical [*]Time History [*]Custom [*]GPS

A função estendida pode configurar qual tela pode ser exibida. Se a tela não for selecionada, ela não será exibida. Note que a tela **Principal** é projetada para ser exibida sempre.

Sta	tistical	Stati	stical
LN4	: 40	Mode	: SPL
LN5	: 50	Filter	: A
LN6	: 60	Detector	: Fast
LN7	: 70	LN1	: 10
LN8	: 80	LN2	: 20
LN9	: 90	LN3	: 30
LN10	: 99	LN4	: 40

A fonte de dados de estatística é SPL a qual é fixa. O usuário não pode trocá-la. Mas o usuário pode configurar o filtro e o detector do SPL e o valor do percentual estatístico neste menu.

Filter:

Pressione <◀>, <►> para configurar a ponderação: A, B, C e Z (Plano).

Detector

Pressione <◀> ou <▶> para configurar a ponderação: **Fast**, **Slow**e **Imp**..

LN1~LN10:

Pressione <◀> ou <▶> para configurar a porcentagem do grupo 10 do LN para 1%~99%

Por exemplo: **LN1:10 = 80 dB** significa que o período integral, 10% do dado medido é maior que 80 dB. O resultado de LN relacionado ao período integral. Ele será restaurado quando um novo período integral começar.

11.4.8 Histórico de tempo

Pressione <▲> ou <▼> para configurar a fonte de dados e o tempo de duração do Histórico do tempo.

Perfil:

Pressione <◀> ou <▶> para configurar a fonte de dados do histórico do tempo: Perfil 1, Perfil 2, Perfil 3.

Duração:

Pressione <◀><►> para configurar a cronologia do histórico do tempo: 1 min. 2 min. 10 min.

11.4.9 Limite Oitava

Octave	Octave Th	reshold
Filter: Z	LA:	038.0
Detector: Fast	LB:	038.0
Octave Threshold	LC:	038.0
	LZ:	079.0
	31.5Hz:	063.0
	63Hz:	052.0
	125Hz:	044.0

O menu **Octave** pode configurar o filtro e o detector antes de calcular a oitava e configurar o limite de alarme de cada banda de oitava, LA, LB, LC, LZ. Se o resultado da medição exceder o limite , o indicador LED acenderá em vermelho. Pressione < ◀> ou < ▶> para configurar a opção para 0,1 dB~199,9 dB.

11.4.10 Medições personalizadas

Custom Measure
Custom 1
Custom 2
Custom 3
Custom 4
Custom 5
Custom 6
Custom 7

Pressione <▲> ou <▼> para configurar a opção de cada grupo de medição personalizada: Filtro, Detector e Modo.

Filtro:

Pressione < ◀> ou < ▶> para configurar a ponderação personalizada: A, B, C e Z (Plano).

Detector:

Pressione <◀> ou <▶> para configurar a ponderação personalizada: **Fast**, **Slow**e **Imp**.. Modo: Pressione <◀> ou <▶> para configurar o modo integral da medição personalizada: SPL, SD, SEL, E, Max, Min, Peak, LEQ, LN1~LN10.

11.4.11 Timer

O menu Timer pode configurar Timer, Start Day, Start Time e RepeatInterval [Cronômetro, Dia do início, Hora do início e Intervalo de repetição]. Pressione <▲> ou <♥> para escolher e selecionar:

Uma nova função chamada **Timer** foi introduzida para iniciar a medição programada. O usuário pode configurar o início da medição das 00:00 do próximo dia, medir durante diversos minutos e repetir a cada hora, para obter a medição automática de 24 h.

Timer:

Pressione <▲> ou <▼> para configurar o modo de funcionamento do **Timer: OFF, Once**e **Loop** [**Desligado**, **Uma vez** e **repetição**].

Start Day:

Pressione <▲> ou <▼> para configurar a data de disparo do

Timer: Ignore ou um dia determinado nos próximos 30 dias. Se selecionar Ignore, o Timer ignorará a data e usará somente a Start Time [Hora de início] para o disparo.

Start Time:

Pressione $< \Delta >$ ou $< \nabla >$ para configurar a hora do disparo do **Timer: 00:00~23:59**.

RepeatPeriod

Se **Timer** for disparado, ele repetirá o disparo sempre nas horas programadas pela opção **RepeatPeriod**. Pressione <**◄**> ou <**▶**> para configurar a opção:

Nota:RepeatPeriod deve ser maior que o tempo integral total (**Itg.Period**x **Repeat**) +5 s, visto que existe um retardo de 3 s fixo para a medição disparada pelo Timer e outros 2 s são necessários antes do retardo. Não é permitido alterar as configurações quando o **Timer** está funcionando. De outro modo, acontecerá algo de errado com o **Timer**.

Medição de 24h pelo time

O usuário pode usar o Timer para executar a medição de 24 horas. A descrição seguinte mostra um exemplo de como executar uma medição de 24 horas.

MEAS.Se	tup	
Delay	2 8	1s
Itg.Period	1 2	5m
Repeat	1 2	1
SWN Logger	1 2	[*]
SWN Log.Ste	p:	1 s
CSD Logger		[*]
CSD Log.Ste	:eр:	5m

Exemplo: A medição começará primeiramente em 14/03/2015 00:00, medindo os primeiros 5 m de cada hora. A medição será armazenada em um arquivo CSD quando a medição for concluída e armazenada em arquivo SWN a cada segundo. A configuração de retardo em MEAS. Setup será ignorada se a medição for disparada pelo Timer. Configure **Itg.Period** como **5 m** e **Repeat**como **1**. Habilite o registrador SWN e o registrador CSD.

Configure o passo do registrador SWN para 1 s e o Passo do registrador CSD para 5 min.

I	imer	Start Day
Timer	: Loop	Start Day: 2015-3-14

Configure o funcionamento do **Timer** para o modo **Loop**, de modo que a medição seja disparada o tempo todo.

Configure **Start Day** para a data desejada.

Configure **Start Time** para **00:00** o que significa a primeira hora em que a medição será disparada.

Configure **RepeatInterval**para 1 h, de modo que a medição seja disparada a cada hora.

11.5 Configuração

Setup Setup	
Contrast	RS-232
Backlight	File Manager
Battery	Boot Mode
Trigger	USB Mode
Date & Time	GPS
Auto PWR Off	Setup Template
RS-232	About

O menu **Setup** inclui a configuração das funções básicas e condições de exibição. Pressione <▲> ou <▼> para escolher e selecionar, pressione <Enter> para acessar o próximo nível do menu.

11.5.1 Contraste

O menu Contrast pode configurar o contraste do monitor LCD para 14 níveis ajustáveis. Pressione <▲> ou <▼> para escolher e selecionar.

O medidor de nível sonoro possui a função de desligamento automático da iluminação posterior para reduzir o consumo de energia e prolongar a vida da bateria. O menu **Backlight** pode configurar o tempo limite de funcionamento e o tempo de retardo da iluminação posterior. Pressione <**▲**> ou <**▼**> para escolher e selecionar.

O menu **Battery**exibe o estado e a voltagem da energia. A voltagem de corte de descarga de uma célula de bateria alcalina LR6/AA/AM3 é de aproximadamente 0,9 V, portanto o medidor de nível sonoro desligará automaticamente quando a voltagem total das 4 células de baterias alcalinas cair abaixo de 3,6 V

11.5.3 Trigger

O menu Trigger pode configurar a função de ativação/desativação da função de disparo. Trigger é uma entrada analógica que controla remotamente o medidor de nível sonoro para iniciar ou parar uma medição. A entrada de disparo, localizada embaixo do medidor de nível sonoro é um conector de 3,5 mm

Coloca em curto circuito as linhas de sinal e o terra para disparar o início ou a paralisação da medição. Note que ao habilitar a função **Trigger**, o botão **<Start/Stop**> se torna indisponível.

11.5.4 Data e hora

O menu **Date & Time** pode configurar a hora do RTC do medidor de nível sonoro. Pressione <**▲**> ou <**▼**> para escolher e selecionar..

Pressione <▲> ou <▼> para selecionar o formato da data e mudar para a configuração da data. Pressione <◀> ou <►> para selecionar o ano, mês e dia, pressione <▲> ou <▼> para modificar o valor. Pressione <**Enter**> para salvar a configuração.

A operação de configuração da hora é praticamente a mesma. Pressione <◀> ou <▶> para selecionar hora, minuto e segundo, pressione <▲> ou <♥> para modificar o valor. Pressione <**Enter**> para salvar a configuração. A fonte de alimentação para o RTC vem de uma bateria interna. Enviar para a assistência técnica da Instrutherm quando o medidor de nível sonoro não puder manter a data e hora. **Nota:** O RTC do medidor de nível sonoro foi calibrado como um relógio de referência com erro médio de 2 ppm (erro máximo de 3 ppm). A precisão do tempo se mantém <10 ppm (<26 s em 30 dias) em temperatura ambiente. O erro de tempo máximo é de aproximadamente 5 s~8 s a 25 °C em testes internos.

Note que o erro de RTC real pode estar além do valor mostrado no manual do usuário se for excedida a faixa de temperatura.

11.5.5 Desligamento automático

O medidor de nível sonoro possui a função de desligamento automático para reduzir o consumo de energia. Quando o medidor de nível sonoro fica no estado parado e nenhuma tecla é pressionada por algum tempo, ele desligará baseado na configuração. Opções de desligamento automático: **1 min**, **5 min**, **10 min**, **30 min**, Desativado. Pressione <**4**> ou <**>**> para escolher e selecionar, pressione <**Enter**> para salvar a configuração.

11.5.6 RS-232

RS-2	32	
RS-232Mode	•	Remote
ID Setup	2	001
BaudRate	•	9600
FlowContro]	L:S	oftWare
Response	:	ON

O menu RS-232 pode configurar a opção da porta serial.

Modos da RS-232:

As opções de modos da RS-232: Remota, Impressora. Pressione <◀> ou <▶> para selecionar. O medidor de nível sonoro pode controlar e enviar dados através da porta RS-232 no modo Remoto..

Além disso a RS-232 pode ser usada para conectar-se a uma impressora térmica (opção) no modo impressora.

Configuração do ID:

O ID Setup pode configurar o número de ID que é usado para identificar em uma rede onde exista mais de um medidor de nível sonoro. O ID pode ser configurado como 1~255. Pressione <◀> ou <►> para escolher e selecionar:

Taxa de Baund:

Baud Rate pode configurar a taxa de velocidade de comunicação da RS-232, as opções são: **4800**bps, **9600**bps, **19200** bps. Pressione <◀> ou <▶>para escolher e selecionar:

Controle de fluxo:

FlowControl pode configurar o modo de controle de fluxo do controle remoto, as opções são: Software, Hardware. Pressione <◀> ou <▶> para escolher e selecionar:

Resposta:

Response pode habilitar ou desabilitar o sinal de resposta (ACK/NAK), as opções são: ON ou OFF. Pressione <◀> ou <▶> para escolher e selecionar:

11.5.7 Gerenciamento de arquivos

ŀ	File M	anag	er
SWN	File	5	22
OCT	File	2	7
CSD	FIle	2	32

File Manager pode gerenciar arquivos SWN, OCT e CSD armazenados. Os números exibidos no lado direito de cada linha é o número do arquivo para cada tipo de arquivo. Pressione <▲ > ou <▼ > para escolher e selecionar, pressione <**Enter**> para acessar o próximo nível do menu.

O menu **SWN File** pode eliminar arquivos SWN, pressione <▲> ou <▼> para selecionar o número do arquivo que precisa ser eliminado. O nome completo do arquivo será exibido na parte inferior da tela. Selecionar 0000 como número do arquivo pode eliminar todos os arquivos SWN existentes

O menu **OCT File** pode eliminar arquivos OCT. A operação é a mesma que para o menu **SWN File**.

O menu **CSD File** pode visualizar, imprimir e eliminar arquivos CSD. Pressione <▲> ou <▼> para mudar o cursor entre **Select**e **Option**. A operação de eliminação é a mesma que para o menu **SWN File**

Selecione **Option**no menu **CSD File** e então pressione < **◄**> ou< **▶**> para selecionar **View**ou **Print** para o arquivo CSD. Após selecionar o número do arquivo e a ação, pressione <**Enter**> para visualizar ou imprimir o conteúdo do arquivo.

Pressione $< \Delta >$, $< \nabla >$, < <> ou < >>para destacar o conteúdo do arquivo no modo **View**. O modo **Print** é praticamente o mesmo que o modo **View**. Pressione <**Enter**> para imprimir o conteúdo arquivo CSD atualmente exibido.

11.5.8 Modo de inicialização

No menu **Boot Mode**, pressione<▲> ou <▼> para selecionar o modo **Normal**, **Power** &**Boot** ou **Boot & Auto Meas**.. **Nota:** O interruptor do modo hardware localizado no compartimento da bateria precisa ser configurado para se adequar a diferentes modos de inicialização.

Normal:

É necessário mudar o interruptor do modo do hardware para Normal. Este é o modo de funcionamento normal do medidor de nível sonoro.

Power & Boot:

É necessário mudar o interruptor do modo do hardware para Boot. Após selecionar este modo, o medidor de nível sonoro irá ligar quando a fonte de alimentação apropriada estiver disponível.

É o modo ideal para integrar-se com outros sistemas, especialmente naqueles casos onde há falhas de energia, o medidor de nível sonoro pode ligar automaticamente após um desligamento.

Boot & Auto Meas.:

É necessário mudar o interruptor do modo do hardware para Boot. Após selecionar este modo, o medidor de nível sonoro não irá somente ligar quando a fonte de alimentação apropriada estiver disponível, mas também iniciará a medição. Quando o medidor de nível sonoro estiver integrado a outro sistema, ele ligará e iniciará a medição automaticamente após o desligamento.

Interruptor do modo do hardware:

O interruptor do modo do hardware está localizado no compartimento da bateria. Ele é fácil de ser encontrado após remover as baterias. Selecione o interruptor para Boot ou Normal com uma caneta ou pinça.

Nota: Área sensível à eletricidade estática. Elimine a eletricidade estática antes da operação.

11.5.9 Modo USB

USB Mode
Always Ask
USB Disk Mode
Modem Mode

O menu **USB Mode** pode configurar o modo de funcionamento ao conectar o medidor de nível sonoro ao computador através do cabo USB. **Always Ask**, **USB Disk Mode** e **Modem Mode** pode ser selecionado.

Always ask:

Sempre pergunta qual modo deverá ser aplicado ao conectar-se ao computador pela USB. Faça a seleção antes, pois de outro modo o computador poderá não reconhecer o medidor de nível sonoro devido ao tempo limite.

USB Disk Mode:

Funciona sempre no **Modo disco USB** sem perguntar ao conectar-se ao computador pela USB. O medidor de nível sonoro pode ser reconhecido pelo computador como um disco USB removível sem instalação de driver, e os arquivos armazenados no cartão MicroSD poderão ser acessados diretamente pelo explorador.

Modem Mode:

Funciona sempre no **Modo modem** sem perguntar ao conectar-se ao computador pela USB.

O medidor de nível sonoro pode ser reconhecido como uma porta serial (porta serial virtual) pelo computador e seguir o mesmo protocolo que o RS-232.

11.5.10 GPS

O menu **GPS** pode configurar a ativação e desativação do **GPS** e o **Auto Time Sync**. Quando **GPS** é desativado, o módulo GPS interno é desligado. Se **Auto Time Sync**for habilitado o **RTC** do medidor de nível sonoro será sincronizado ao obter a hora do GPS e então manterá a sincronização uma vez a cada hora.

11.5.11 Modo de configuração

Setu	p Template
SETUP	2014-10-14
SETUP	2014-10-20
2	Empty
	Empty
	Empty
	56 EL

O modelo de configuração é usado para armazenar 5 grupos parâmetros de configurações de usuário do medidor de nível sonoro para diferentes aplicações. **Nota**: O modelo não mudará o fator de calibração. Não tente carregar modelos de versões antigas em uma versão de firmware nova, pois algumas modificações poderão não se aplicar no formato do modelo.

Setup Template	Setup Template
1 <mark>1</mark> AAAA 2014-10-20	Option : Load Settings: AAAAA 2014-10-20

Pressione **<Enter>** no modelo em branco para salvar 1 configuração de grupo para o qual o usuário pode definir o nome com 5 letras ou números. Pressione **<Enter>** em um modelo existente para carregá-lo ou eliminá-lo.

About

Type :308S Class:1 S/N :490001 Ver. :3.00.141011 HWID :P0274.03.B11 Copyright (C) 2014 Instrutherm

11.6 Idioma

O menu About mostra o Tipo, Classe, S/N (número de série), Versão e HWID (ID do hardware) do medidor de nível sonoro.

O medidor de nível sonoro suporta 6 idiomas: Inglês, Chinês, Português, Espanhol, Alemão e Francês. Pressione <▲> ou <▼> para selecionar o idioma apropriado e então pressione <Enter> para salvar a configuração.

11.7 Saida

O menu **Output** pode selecionar quais dados de medição deverão ser entregues em **DC OUT**. Existem as opções **Level Meter DC Out** e **Octave DC Out** para o modo medidor de nível e para o modo de 1/1 de oitava. A opção **Printer**também pode ser incluída neste menu. Pressione <▲> ou <♥> para escolher e selecionar.

Existem duas portas de saída analógicas no medidor de nível sonoro: **DC OUT** e **AC OUT**. Use cabo coaxial para conectar **DC OUT** ou **AC OUT** a outro dispositivo ou sistema. É recomendado que a resistência de entrada do dispositivo ou sistema terminal seja acima de 5 k Ω .

AC OUT A porta **AC OUT** está localizada embaixo do medidor de nível sonoro. Ele entrega diretamente o sinal do microfone, sem configurações aplicadas. A voltagem de saída máxima é de 5 V rms (±7 V de pico), e a corrente máxima de saída é ±15 mA.

Nota: Adicione circuíto de casamento de impedância quando a resistência de entrada do dispositivo ou sistema terminal não for alta o suficiente. AC OUT somente pode ser usado para gravação ou monitoramento de ruído devido ao ruído de fundo ser mais alto que o limite inferior da faixa linear do medidor de nível sonoro.

DC OUT

DC OUT é usado para entregar sinal de CC analógico que é proporcional ao resultado medido com proporção de 10 mV/dB. Por exemplo, a saída será 938 mV para 93,8 dB. É recomendado filtrar ou calcular a média do sinal de saída para remover ruído.

11.7.1 Nivel do medidor DC OUT

Level Meter DC Out pode configurar a saída de sinal do modo medidor de nível. Pressione <▲>, <▼>, <◀> ou <►> para escolher e selecionar. Filter: A, B, C e Z (Plano). Detector: Fast, Slow, Imp. Mode: SPL, LEQ, Peak

11.7.2 Saida DC de banda de oitava

Octave DC Out pode configurar a saída de sinal do modo de oitava. As opções são: LAeq, LBeq, LCeq, LZeqe 6,3 Hz~20 kHz. Pressione <◀> ou <▶> para escolher e selecionar.

Se uma banda não disponível para a função corrente for selecionada , será exibido **"InvalidOctave Band!**".

O conector **DC Out** é uma tomada de fones de ouvido de 3 pinos de 3,5 mm. A ponta e o anel são linhas de sinal, enquanto que a bainha é a linha de terra.

Nota: Configure o modo **Printer**no menu **RS-232** antes da operação de impressão.

11.8 Configurações de fábrica

Factory Settings proporciona a função para restaurar todos os parâmetros que foram modificados pelos usuários. Os parâmetros serão inicializados para os valores padrão.
Pressione < ◀ > ou < ▶ > para selecionar Y (Sim) ou N (Não). Selecionar Y e pressionar < Enter> inicializará os parâmetros.
Selecione N ou pressione < ESC> para cancelar a restauração.

Anexo 1 - Correções para os efeitos típicos das reflexões do caso do medidor de nível de som e difração do som ao redor do microfone

Freq.	valor	Freq.	valor	Freq.	valor	Freq.	valor	Freq.	valor	Freq.	valor
[Hz]	[dB]	[Hz]	[dB]	[Hz]	[dB]	[Hz]	[dB]	[Hz]	[dB]	[Hz]	[dB]
*50.119	-0.1	630.96	-0.1	1678.8	-0.1	3162.3	0.1	5956.6	0.9	11220	0.4
63.096	-0.1	794.33	-0.3	1778.3	0.1	3349.7	0.5	6309.6	0.6	11885	0.6
79.433	-0.2	1000.0	0.0	1883.6	0.0	3548.1	0.5	6683.4	0.6	12589	-0.1
100.00	-0.3	1059.3	0.0	1995.3	0.2	3758.4	0.0	7079.5	0.6	13335	-0.4
125.89	-0.3	1122.0	-0.1	2113.5	0.1	3981.1	0.2	7498.9	-0.8	14125	0.4
158.49	-0.2	1188.5	0.0	2238.7	-0.1	4217.0	0.4	7943.3	-0.1	14962	0.2
199.53	-0.1	1258.9	-0.2	2371.4	0.0	4466.8	0.1	8414.0	0.2	15849	-0.7
251.19	0.2	1333.5	0.0	2.511.9	0.2	4731.5	1.0	8912.5	-0.1	*16788	0.4
316.23	0.0	1412.5	0.0	2660.7	0.1	5011.9	0.7	9440.6	0.3	*17783	0.3
398.11	0.0	1496.2	0.1	2818.4	-1.0	5.8	0.9	10000	0.2	*18836	-0.3
501.19	0.0	1584.9	0.1	2985.4	0.2	5623.4	0.3	10593	1.0	*19953	-0.4
Incertezas expandidas: U=0.17 (k=2) @ <=4kHz, U=0.29 (k=2) @ >4kHz											

Observação: a frequência com * não é requisito do padrão, consulte IEC61672-1 para obter a frequência exata

Freq. [Hz]	Valor [dB]	Freq. [Hz]	Valor [dB]	Freq. [Hz]	Valor [dB]				
*50.119	-0.04	*398.11	0.06	3162.3	0.12				
*63.096	0.04	*501.19	0.04	3981.1	-0.24				
*79.433	0.06	*630.96	0.06	5011.9	-0.30				
*100.00	0.00	*794.33	0.09	6DEC-6000.6	-0.33				
*125.89	0.03	1000.0	0.14	7943.3	-0.66				
*158.49	0.02	1258.9	0.24	10000	-0.71				
*199.53	0.03	1584.9	0.30	12589	-1.04				
*251.19	0.02	1995.3	0.37 15849		-1.37				
*316.23	-0.01	2511.9	0.41	*19953	-1.92				
Incortozoo ovnondi									

Incertezas expandidas: U=0.15 (k=2) @ <=4kHz, U=0.21 (k=2) @ >4kHz.

Observação: a frequência com * não é requisito do padrão, consulte IEC61672-1 para obter a frequência exata.

Anexo 3 Correções do Atuador Eletrostático

As seguintes correções são medidas pelo atuador eletrostático EA002 e fonte de alimentação AS001.

Incertezas Expandidas: U=0.19 (k=2) @ <=4kHz, U=0.34 (k=2) @ 4kHz~10kHz, U=0.39

(k=2) @ >=10kHz.

12. Lista de Acessórios

Acessórios Inclusos

- Medidor de nível sonoro
- Pré-amplificador ICCP com conector TNC
- Microfone classe 1
- Protetor de vento de 90 mm de diâmetro para microfone de 1/2"
- Cartão MicroSD de 4GB
- Adaptador de energia AC/DC 9V/500 mA
- Cabo USB
- Maleta de transporte
- Cartão com instruções para download do manual e software
- Acessórios opcionais (vendidos separadamente)
- Filtro de banda de 1/3 de oitavas Mod.: F3 (08628)
- Impressora portátil Mod.: PR-500 (08633)
- Calibrador acústico classe 1 Mod.: CAL-5000 (08047)
- Mini tripé (06417)
- Certificado de calibração RBC
- Módulo GPS Mod.: GPS-10 (08666)

7. TERMO DE GARANTIA

O instrumento assim como todos os acessórios que o acompanham, foram cuidadosamente ajustados e inspecionados individualmente pelo nosso controle de qualidade, para maior segurança e garantia do seu perfeito funcionamento.

Este aparelho é garantido contra possíveis defeitos de fabricação ou danos, que se verificar por uso correto do equipamento, no período de 12 meses a partir da data da compra.

A garantia não abrange fusíveis, pilhas, baterias e acessórios como pontas de prova, bolsa de transporte, sensores, etc.

Excluem-se de garantia os seguintes casos:

- a) Uso incorreto, contrariando as instruções;
- b) Violação do aparelho por técnicos não autorizados;
- c) Queda e exposição a ambientes inadequados.

Observações:

• Ao enviar o equipamento para assistência técnica e o mesmo possuir certificado de calibração, deve ser encaminhada uma carta junto com o equipamento, autorizando a abertura do mesmo pela assistência técnica da Instrutherm.

• Caso a empresa possua Inscrição Estadual, esta deve encaminhar uma nota fiscal de simples remessa do equipamento para fins de trânsito.

• No caso de pessoa física ou jurídica possuindo isenção de Inscrição Estadual, esta deve encaminhar uma carta discriminando sua isenção e informando que os equipamentos foram encaminhados a fins exclusivos de manutenção ou emissão de certificado de calibração.

• Recomendamos que as pilhas sejam retiradas do instrumento após o uso. Não utilize pilhas novas juntamente com pilhas usadas. Não utilize pilhas recarregáveis.

• Ao solicitar qualquer informação técnica sobre este equipamento, tenha sempre em mãos o n.º da nota fiscal de venda da Instrutherm, código de barras e n.º de série do equipamento.

• <u>Todas as despesas de frete (dentro ou fora do período de garantia) e</u> <u>riscos correm por conta do comprador.</u>

O manual pode sofrer alterações sem prévio aviso.

Experiência, competência e inovação sempre a seu lado

VENDAS E ASSISTÊNCIA TÉCNICA Instrutherm Instrumentos de Medição Ltda. Rua Jorge de Freitas, 264 – Freguesia do Ó São Paulo – SP – CEP: 02911-030 Fone: (11) 2144-2800 – Fax: (11) 2144-2800 E-mail: <u>instrutherm@instrutherm.com.br</u> Site: <u>www.instrutherm.com.br</u> SAC:<u>sac@instrutherm.com.br</u>

19/05/2023